Skip to main content

Determination of Charge Transfer Resistance from Randles Circuit Spectra Using Elliptical Fitting

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2021)

Abstract

Physical and chemical phenomena of an electrochemical system can be described by electrochemical impedance spectroscopy (EIS). The spectral response of impedimetric biosensors is often modeled by the Randles circuit, whose parameters can be determined by regression techniques. As one of these parameters, the charge transfer resistance \(\mathrm {R_{ct}}\) is often used as the sensor response. Regression in the laboratory environment is usually performed using commercial software, which is typically computationally intensive. Therefore, applications of biosensors outside the laboratory require more efficient concepts, especially when miniaturized or portable instrumentations are used. In this work, an approach for geometric elliptical fitting of the graph in the Nyquist diagram is presented and compared with the complex nonlinear least squares (CNLS) regression. The evaluation is based, on the one hand, on artificial spectra and, on the other hand, on real data from a immunologically sensitive field-effect transistor (IMFET) for cortisol measurement in saliva. For simulated noisy data, the average error in computing \(\mathrm {R_{ct}}\) using the elliptical fit with \(\mathrm {-2.7\% }\) is worse than using the CNLS with \(0.024 \%\), but the former required only about of computation time compared to the latter. Applying the elliptic fitting to real data from an IMFET, the determination of \(R_{ct}\) showed deviations of only \(\mathrm 0.7\pm 2.7\%\) compared to CNLS. The impact of these variations on a standard addition method (SAM) was demonstrated for quantitative analysis of cortisol concentration. After application-oriented evaluations considering the possible accuracies, the elliptical fitting could prove to be a resource-saving option for the analysis of impedance spectra in mobile applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayllon, D., Seoane, F., Gil-Pita, R.: Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements - a comparative study. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2009, pp. 3779–3782 (2009). https://doi.org/10.1109/IEMBS.2009.5334494

  2. Bahadır, E.B., Sezgintürk, M.K.: A review on impedimetric biosensors. Artif. Cells Nanomed. Biotechnol. 44(1), 248–262 (2016). https://doi.org/10.3109/21691401.2014.942456

    Article  Google Scholar 

  3. Barsoukov, E., Macdonald, J.R.: Impedance Spectroscopy: Theory, Experiment, and Applications. Wiley, Hoboken (2005). https://doi.org/10.1002/0471716243

    Book  Google Scholar 

  4. Barsukov, Y., Macdonald, J.R.: Electrochemical impedance spectroscopy, pp. 1–17. American Cancer Society (2012). https://doi.org/10.1002/0471266965.com124

  5. Bausells, J., et al.: On the impedance spectroscopy of field-effect biosensors. Electrochem. Sci. Adv. (2021). https://doi.org/10.1002/elsa.202100138

  6. Ben Halima, H., et al.: Immuno field-effect transistor (immunoFET) for detection of salivary cortisol using potentiometric and impedance spectroscopy for monitoring heart failure. Talanta 123802 (2022). Manuscript submitted for publication

    Google Scholar 

  7. Bertsekas, D.P.: Nonlinear Programming, Second Edition (1999)

    Google Scholar 

  8. Bookstein, F.L.: Fitting conic sections to scattered data. Comput. Graphics Image Process. 9(1), 56–71 (1979). https://doi.org/10.1016/0146-664X(79)90082-0

    Article  Google Scholar 

  9. Chowdhury, A.D., Ganganboina, A.B., Park, E.Y., Doong, R.A.: Impedimetric biosensor for detection of cancer cells employing carbohydrate targeting ability of Concanavalin A. Biosens. Bioelectron. 122, 95–103 (2018). https://doi.org/10.1016/j.bios.2018.08.039

    Article  Google Scholar 

  10. Dang, W., Manjakkal, L., Navaraj, W.T., Lorenzelli, L., Vinciguerra, V., Dahiya, R.: Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 107, 192–202 (2018). https://doi.org/10.1016/j.bios.2018.02.025

    Article  Google Scholar 

  11. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999). https://doi.org/10.1109/34.765658

    Article  Google Scholar 

  12. Halima, H.B., et al.: A novel cortisol biosensor based on the capacitive structure of hafnium oxide: application for heart failure monitoring. In: 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors, pp. 1067–1070 (2019). https://doi.org/10.1109/TRANSDUCERS.2019.8808561

  13. Hammer, F., et al.: High evening salivary cortisol is an independent predictor of increased mortality risk in patients with systolic heart failure. Int. J. Cardiol. 203, 69–73 (2016). https://doi.org/10.1016/j.ijcard.2015.10.084

    Article  Google Scholar 

  14. Kauffman, G.B.: Electrochemical impedance spectroscopy. By Mark E. Orazem and Bernard Tribollet. Angewandte Chemie International Edition (2009). https://doi.org/10.1002/anie.200805564

  15. Kharitonov, A.B., Wasserman, J., Katz, E., Willner, I.: The use of impedance spectroscopy for the characterization of protein-modified ISFET devices: application of the method for the analysis of biorecognition processes. J. Phys. Chem. B 105(19), 4205–4213 (2001). https://doi.org/10.1021/jp0045383

    Article  Google Scholar 

  16. Leva-Bueno, J., Peyman, S.A., Millner, P.A.: A review on impedimetric immunosensors for pathogen and biomarker detection. Med. Microbiol. Immunol. 209, 343–362 (2020). https://doi.org/10.1007/s00430-020-00668-0

    Article  Google Scholar 

  17. Macdonald, D.D.: Some advantages and pitfalls of electrochemical impedance spectroscopy. Corrosion 46(3), 229–242 (1990). https://doi.org/10.5006/1.3585096

    Article  Google Scholar 

  18. Orazem, M.E., Tribollet, B.: Electrochemical Impedance Spectroscopy. Wiley (2008). https://doi.org/10.1002/9780470381588

  19. Papageorgiou, M., Leibold, M., Buss, M., Papageorgiou, M., Leibold, M., Buss, M.: Methode der kleinsten Quadrate. In: Optimierung (2015). https://doi.org/10.1007/978-3-662-46936-1_6

  20. Pejcic, B., De Marco, R.: Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim. Acta 51(28), 6217–6229 (2006). https://doi.org/10.1016/j.electacta.2006.04.025

    Article  Google Scholar 

  21. Pfeiffer, N., Jechow, M., Wachter, T., Hofmann, C., Errachid, A., Heuberger, A.: Impact of normalization, standardization and pre-fit on the success rate of fitting in electrochemical impedance spectroscopy. Curr. Dir. Biomed. Eng. 7(2), 492–495 (2021). https://doi.org/10.1515/cdbme-2021-2125

    Article  Google Scholar 

  22. Pfeiffer, N., Wachter, T., Frickel, J., Hofmann, C., Errachid, A., Heuberger, A.: Elliptical fitting as an alternative approach to complex nonlinear least squares regression for modeling electrochemical impedance spectroscopy. In: Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 42–49. SCITEPRESS - Science and Technology Publications (2021). https://doi.org/10.5220/0010231600420049

  23. Prodromidis, M.I.: Impedimetric immunosensors—a review. Electrochim. Acta 55(14), 4227–4233 (2010). https://doi.org/10.1016/j.electacta.2009.01.081

    Article  Google Scholar 

  24. Randviir, E.P., Banks, C.E.: Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 5(5), 1098–1115 (2013). https://doi.org/10.1039/c3ay26476a

    Article  Google Scholar 

  25. Rushworth, J.V., Ahmed, A., Griffiths, H.H., Pollock, N.M., Hooper, N.M., Millner, P.A.: A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens. Bioelectron. 56, 83–90 (2014). https://doi.org/10.1016/j.bios.2013.12.036

    Article  Google Scholar 

  26. Sgobbi, L.F., Razzino, C.A., Machado, S.A.: A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian blue nanocubes modified screen-printed electrode. Electrochim. Acta 191, 1010–1017 (2016). https://doi.org/10.1016/j.electacta.2015.11.151

    Article  Google Scholar 

  27. Shoar Abouzari, M.R., Berkemeier, F., Schmitz, G., Wilmer, D.: On the physical interpretation of constant phase elements. Solid State Ion. 180(14–16), 922–927 (2009). https://doi.org/10.1016/j.ssi.2009.04.002

    Article  Google Scholar 

  28. Sun, A., Venkatesh, A.G., Hall, D.A.: A multi-technique reconfigurable electrochemical biosensor: enabling personal health monitoring in mobile devices. IEEE Trans. Biomed. Circuits Syst. 10(5), 945–954 (2016). https://doi.org/10.1109/TBCAS.2016.2586504

    Article  Google Scholar 

  29. Sung, D., Koo, J.: A review of BioFET’s basic principles and materials for biomedical applications. Biomed. Eng. Lett. 11(2), 85–96 (2021). https://doi.org/10.1007/s13534-021-00187-8

    Article  Google Scholar 

  30. Tu, J., Torrente-Rodríguez, R.M., Wang, M., Gao, W.: The era of digital health: a review of portable and wearable affinity biosensors. Adv. Func. Mater. 30(29), 1906713 (2020). https://doi.org/10.1002/adfm.201906713

    Article  Google Scholar 

  31. Vozgirdaite, D., et al.: Development of an immunofet for analysis of tumour necrosis factor-\(\rm \alpha \) in artificial saliva: application for heart failure monitoring. Chemosensors 9(2), 26 (2021). https://doi.org/10.3390/chemosensors9020026

    Article  Google Scholar 

  32. Yuan, X.Z., Song, C., Wang, H., Zhang, J.: Electrochemical impedance spectroscopy in PEM fuel cells. Springer, London (2010). https://doi.org/10.1007/978-1-84882-846-9

Download references

Acknowledgements

This research was funded by EU H2020 research and innovation program entitled KardiaTool with grant No 768686.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Pfeiffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pfeiffer, N. et al. (2022). Determination of Charge Transfer Resistance from Randles Circuit Spectra Using Elliptical Fitting. In: Gehin, C., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2021. Communications in Computer and Information Science, vol 1710. Springer, Cham. https://doi.org/10.1007/978-3-031-20664-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20664-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20663-4

  • Online ISBN: 978-3-031-20664-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics