Skip to main content

Towards Segmentation and Labelling of Motion Data in Manufacturing Scenarios

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2021)

Abstract

There is a significant interest to evaluate the occupational exposure that manufacturing operators are subjected throughout the working day. The objective evaluation of occupational exposure with direct measurements and the need for automatic annotation of relevant events arose. The current work proposes the use of a self similarity matrix (SSM) as a tool to flag events that may be of importance to be analyzed by ergonomic teams. This way, data directly retrieved from the work environment will be summarized and segmented into sub-sequences of interest over a multi-timescale approach. The process occurs under 3 timescale levels: Active working periods, working cycles, and in-cycle activities. The novelty function was used to segment non-active and active working periods with an F1-score of 95%. while the similarity function was used to correctly segment 98% of working cycle with a duration error of 6.12%. In addition, this method was extended into examples of multi time scale segmentation with the intent of providing a summary of a time series as well as support in data labeling tasks, by means of a query-by-example process to detect all subsequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Santos, S., Folgado, D., Rodrigues, J., Mollaei, N., Fujão, C., Gamboa, H.: Exploring inertial sensor fusion methods for direct ergonomic assessments. In: Ye, X., et al. (eds) Biomedical Engineering Systems and Technologies, BIOSTEC 2020. Communications in Computer and Information Science, vol. 1400. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72379-8_14

  2. Roh, Y., Heo, G., Whang, S.E.: A survey on data collection for machine learning: a big data - AI integration perspective. IEEE Trans. Knowl. Data Eng. 33(4), 1328–1347 (2021). https://doi.org/10.1109/TKDE.2019.2946162

    Article  Google Scholar 

  3. Santos, A., Rodrigues, J., Folgado, D., Santos, S., Fujão, C., Gamboa, H.: Self-similarity matrix of morphological features for motion data analysis in manufacturing scenarios. In: Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSIGNALS, ISBN 978-989-758-490-9, ISSN 2184-4305, pp. 80-90 (2021). https://doi.org/10.5220/0010252800800090

  4. Paulus, J., Müller, M., Klapuri, A.: Audio-based music structure analysis. In: Proceedings of the 11th International Society for Music Information Retrieval Conference, ISMIR 2010, pp. 625–636 (2010)

    Google Scholar 

  5. Heldt, T., Oefinger, M.B., Hoshiyama, M., Mark, R.G.: Circulatory response to passive and active changes in posture. Comput. Cardiol. 30, 263–266 (2003)

    Google Scholar 

  6. Song, J., Chang, R.W., Dunlop, D.D.: Population impact of arthritis on disability in older adults. Arthritis Care Res. 55(2), 248–255 (2006). https://doi.org/10.1002/art.21842. ISSN 21514658

    Article  Google Scholar 

  7. Palazzo, C., Ravaud, J.F., Papelard, A., Ravaud, P., Poiraudeau, S.: The burden of musculoskeletal conditions. PLoS ONE 9(3), e90633 (2014). https://doi.org/10.1371/journal.pone.0090633. Ed. by A. Chopra, ISSN 1932-6203

    Article  Google Scholar 

  8. Dominick, C.H., Blyth, F.M., Nicholas, M.K.: Unpacking the burden: understanding the relationships between chronic pain and comorbidity in the general population. Pain 153(2), 293–304 (2012). https://doi.org/10.1016/j.pain.2011.09.018. ISSN 03043959

    Article  Google Scholar 

  9. Antonopoulou, M.D., Alegakis, A.K., Hadjipavlou, A.G., Lionis, C.D.: Studying the association between musculoskeletal disorders, quality of life and mental health. A primary care pilot study in rural Crete, Greece. BMC Musculoskel. Disord. 10(1), 1–8 (2009). https://doi.org/10.1186/1471-2474-10-143. ISSN 14712474

    Article  Google Scholar 

  10. Kadam, U.T., Jordan, K., Croft, P.R.: Clinical comorbidity in patients with osteoarthritis: a case-control study of general practice consumers in England and Wales (2004). https://doi.org/10.1136/ard.2003.007526

  11. Luttmann, A., Jager, M., Griefahn, B., Caffier, G., Liebers, F.: World Health Organization preventing musculoskeletal disorders in the workplace (2003). ISSN 924159053X

    Google Scholar 

  12. Pruss-Ustun, A., Corvalan, C.: Preventing Disease Through Healthy Environment: A Global Assessment of the Burden of Disease from Environmental Risks, p. 105. World Health Organization, Geneva (2006)

    Google Scholar 

  13. Santos, S., Folgado, D., Rodrigues, J., Mollaei, N., Fujao, C., Gamboa, H.: Explaining the ergonomic assessment of human movement in industrial contexts. In: BIOSIGNALS, pp. 79–88 (2020)

    Google Scholar 

  14. Lu, C.M., Ferrier, N.J.: Repetitive motion analysis: segmentation and event classification. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 258–263 (2004)

    Article  Google Scholar 

  15. Lu, C.M., Ferrier, N.J.: Automated analysis of repetitive joint motion. IEEE Trans. Inf Technol. Biomed. 7(4), 263–273 (2003)

    Article  Google Scholar 

  16. Wang, Q., et al.: Unsupervised temporal segmentation of repetitive human actions based on kinematic modeling and frequency analysis. In: 2015 International Conference on 3D Vision. IEEE (2015)

    Google Scholar 

  17. Matias, P., Folgado, D., Gamboa, H., Carreiro, A.: Time series segmentation using neural networks with cross-domain transfer learning. Electronics 10(15), 1805 (2021). https://doi.org/10.3390/electronics10151805

    Article  Google Scholar 

  18. Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised temporal segmentation of human motion. In: Symposium on Computer Animation, pp. 167–176 (2014)

    Google Scholar 

  19. Yeh, C.-C.M., et al.: Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile. Data Min. Knowl. Discov. 32(1), 83–123 (2017). https://doi.org/10.1007/s10618-017-0519-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Müller, et al.: libfmp: a python package for fundamentals of music processing. J. Open Source Softw. 6(63), 3326 (2021). https://doi.org/10.21105/joss.03326

    Article  Google Scholar 

  21. Khusainov, R., et al.: Real-time human ambulation, activity, and physiological monitoring: taxonomy of issues, techniques, applications, challenges and limitations. Sensors 13(10), 12852–12902 (2013)

    Article  Google Scholar 

  22. Rodrigues, J., Belo, D., Gamboa, H.: Noise detection on ECG based on agglomerative clustering of morphological features. Comput. Biol. Med. 87, 322–334 (2017). https://doi.org/10.1016/j.compbiomed.2017.06.009. ISSN 0010–4825

    Article  Google Scholar 

  23. Zheng, X., Wang, M., Ordieres-Meré, J.: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0. Sensors 18(7), 2146 (2018). https://doi.org/10.3390/s18072146

  24. Bello, J.P., Grosche, P., Müller, M., Weiss, R.: Content-based methods for knowledge discovery in music. In: Bader, R. (ed.) Springer Handbook of Systematic Musicology. SH, pp. 823–840. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-55004-5_39

    Chapter  Google Scholar 

  25. Müller, M.: Fundamentals of Music Processing: Using Python and Jupyter Notebooks (2021). https://doi.org/10.1007/978-3-030-69808-9

  26. Müller, M.: An educational guide through the FMP notebooks for teaching and learning fundamentals of music processing. Signals 2(2), 245–285 (2021). https://doi.org/10.3390/signals2020018

    Article  Google Scholar 

  27. Reyes-Ortiz, J.-L., Oneto, L., Samà, A., Parra, X., Anguita, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171, 754–767 (2016). ISSN 0925–2312

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Fundação para a Ciência e Tecnologia, and Ph.D. grant PD/BDE/142816/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, A., Rodrigues, J., Folgado, D., Santos, S., Fujão, C., Gamboa, H. (2022). Towards Segmentation and Labelling of Motion Data in Manufacturing Scenarios. In: Gehin, C., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2021. Communications in Computer and Information Science, vol 1710. Springer, Cham. https://doi.org/10.1007/978-3-031-20664-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20664-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20663-4

  • Online ISBN: 978-3-031-20664-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics