Skip to main content

A New Approach to Visual Classification Using Concatenated Deep Learning for Multimode Fusion of EEG and Image Data

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13598))

Included in the following conference series:

  • 822 Accesses

Abstract

In this work, we explore various approaches for automated visual classification of multimodal inputs such as EEG and Image data for the same item, focusing on finding an optimal solution. Our new technique examines the fusion of EEG and Image data using a concatenation of deep learning models for classification, where the EEG feature space is encoded with 8-bit-grayscale images. This concatenated-based model achieves a 95% accuracy for the 39 class EEG-ImageNet dataset, setting a new benchmark and surpassing all prior work. Furthermore, we show that it is computationally effective in multimodal classification when human subjects are presented with visual stimuli of objects in three-dimensional real-world space rather than images of the same. These findings will improve machine visual perception and bring it closer to human-learned vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akin, M., Kiymik, M.K.: Application of periodogram and AR spectral analysis to EEG signals. J. Med. Syst. 24(4), 247–256 (2000)

    Article  Google Scholar 

  2. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 609–617 (2017)

    Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Fares, A., Zhong, S., Jiang, J.: Region level bi-directional deep learning framework for EEG-based image classification. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 368–373. IEEE (2018)

    Google Scholar 

  6. Funke, C.M., et al.: Five points to check when comparing visual perception in humans and machines. J. Vis. 21(3), 16–16 (2021)

    Article  Google Scholar 

  7. Guillaumin, M., Verbeek, J., Schmid, C.: Multimodal semi-supervised learning for image classification. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 902–909. IEEE (2010)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017)

    Google Scholar 

  11. Ilievski, I., Feng, J.: Multimodal learning and reasoning for visual question answering. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Kaneshiro, B., Guimaraes, P., et al.: A representational similarity analysis of the dynamics of object processing using single-trial EEG classification. PLoS ONE 10(8), e0135697 (2015)

    Article  Google Scholar 

  13. Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D., Shah, M.: Brain2Image: converting brain signals into images. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1809–1817 (2017)

    Google Scholar 

  14. Koelstra, S., Mühl, C., Patras, I.: EEG analysis for implicit tagging of video data. In: 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, pp. 1–6 (2009)

    Google Scholar 

  15. Lawhern, V.J., et al.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  16. Li, Y., Dzirasa, K., Carin, L., Carlson, D.E., et al.: Targeting EEG/LFP synchrony with neural nets. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. MacInnes, J., Santosa, S., Wright, W.: Visual classification: expert knowledge guides machine learning. IEEE Comput. Graph. Appl. 30(1), 8–14 (2010)

    Article  Google Scholar 

  18. Marini, F., Breeding, K.A., Snow, J.C.: Dataset of 24-subject EEG recordings during viewing of real-world objects and planar images of the same items. Data Brief 24, 103857 (2019)

    Article  Google Scholar 

  19. Marini, F., Breeding, K.A., Snow, J.C.: Distinct visuo-motor brain dynamics for real-world objects versus planar images. Neuroimage 195, 232–242 (2019)

    Article  Google Scholar 

  20. Mishra, A., Raj, N., Bajwa, G.: EEG-based image feature extraction for visual classification using deep learning. In: 2022 Third International Conference on Intelligent Data Science Technologies and Applications (IDSTA) In Press. IEEE (2022). https://intelligenttech.org/IDSTA2022/IDSTApackingList/26_DTL2022_RC_8931.pdf

  21. Owens, A., Wu, J., McDermott, J.H., Freeman, W.T., Torralba, A.: Ambient sound provides supervision for visual learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 801–816. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_48

    Chapter  Google Scholar 

  22. Palazzo, S., Spampinato, C., et al.: Correct block-design experiments mitigate temporal correlation bias in EEG classification. arXiv preprint arXiv:2012.03849 (2020)

  23. Palazzo, S., Spampinato, C., et al.: Decoding brain representations by multimodal learning of neural activity and visual features. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 3833–3849 (2020)

    Article  Google Scholar 

  24. Pedregosa, F., et al.: Scikit-Learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Phoha, S.: Machine perception and learning grand challenge: situational intelligence using cross-sensory fusion. Front. Robot. AI 1, 7 (2014)

    Article  Google Scholar 

  26. Raghu, S., Sriraam, N., Temel, Y., Rao, S.V., Kubben, P.L.: EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Netw. 124, 202–212 (2020)

    Article  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint:1409.1556 (2014)

    Google Scholar 

  28. Spampinato, C., Palazzo, S., et al.: Deep learning human mind for automated visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6809–6817 (2017)

    Google Scholar 

  29. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946 (2019)

    Google Scholar 

  30. Tao, Y., et al.: Gated transformer for decoding human brain EEG signals. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 125–130. IEEE (2021)

    Google Scholar 

  31. Zhang, H., Silva, F.H.S., Ohata, E.F., Medeiros, A.G., Rebouças Filho, P.P.: Bi-dimensional approach based on transfer learning for alcoholism pre-disposition classification via EEG signals. Front. Human Neurosci. 14 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garima Bajwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, A., Bajwa, G. (2022). A New Approach to Visual Classification Using Concatenated Deep Learning for Multimode Fusion of EEG and Image Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20713-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20712-9

  • Online ISBN: 978-3-031-20713-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics