Skip to main content

RSI-Grad-CAM: Visual Explanations from Deep Networks via Riemann-Stieltjes Integrated Gradient-Based Localization

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Abstract

Neural networks are becoming increasingly better at tasks that involve classifying and recognizing images. At the same time techniques intended to explain the network output have been proposed. Here we examine three such techniques: Gradient-based Class Activation Mapping (Grad-CAM), Integrated Gradients (IG), and Integrated Grad-CAM, and introduce a new technique, that we call Riemann-Stieltjes Integrated Grad-CAM (RSI-Grad-CAM) that overcomes some of the shortcomings of those and similar techniques. Like Grad-CAM, our method can be applied to any layer of the network, and like Integrated Gradients it is not affected by the problem of vanishing gradients. For efficiency, gradient integration is performed numerically at the layer level using a Riemann-Stieltjes sum approximation. Compared to Grad-CAM, heatmaps produced by our algorithm are better focused in the areas of interest, and their numerical computation is more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We will be using the terms heatmap, saliency map, and localization map interchangeably.

References

  1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I.J., Hardt, M., Kim, B.: Sanity checks for saliency maps. CoRR abs/1810.03292 (2018). https://arxiv.org/abs/1810.03292

  2. Chattopadhyay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (2018). https://doi.org/10.1109/wacv.2018.00097

  3. Chen, L., Chen, J., Hajimirsadeghi, H., Mori, G.: Adapting Grad-CAM for embedding networks (2020). https://arxiv.org/abs/2001.06538

  4. Dhamdhere, K., Sundararajan, M., Yan, Q.: How important is a neuron? (2018). https://arxiv.org/abs/1805.12233

  5. Kokhlikyan, N., et al.: Captum: a unified and generic model interpretability library for PyTorch (2020). https://arxiv.org/abs/2009.07896

  6. Protter, M.H., Morrey, C.B.: The Riemann—Stieltjes integral and functions of bounded variation. In: A First Course in Real Analysis. Undergraduate Texts in Mathematics. Springer, NY (1991). https://doi.org/10.1007/978-1-4419-8744-0_12

  7. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: explaining the predictions of any classifier. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations (2016). https://doi.org/10.18653/v1/N16-3020

  8. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  9. Sattarzadeh, S., Sudhakar, M., Plataniotis, K.N., Jang, J., Jeong, Y., Kim, H.: Integrated grad-CAM: sensitivity-aware visual explanation of deep convolutional networks via integrated gradient-based scoring (2021). https://arxiv.org/abs/2102.07805

  10. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015). https://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a

  12. Sorokin, A., Forsyth, D.A.: Utility data annotation with amazon mechanical turk. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2008)

    Google Scholar 

  13. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR (2017). https://proceedings.mlr.press/v70/sundararajan17a.html

  14. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 24–25 (2020)

    Google Scholar 

  15. Williamson, R., Trotter, H.: Multivariable Mathematics, 4th edn. Pearson Education Inc. (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirtha Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucas, M., Lerma, M., Furst, J., Raicu, D. (2022). RSI-Grad-CAM: Visual Explanations from Deep Networks via Riemann-Stieltjes Integrated Gradient-Based Localization. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20713-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20712-9

  • Online ISBN: 978-3-031-20713-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics