Skip to main content

A Practical Algorithm for Degree-k Voronoi Domains of Three-Dimensional Periodic Point Sets

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13598))

Included in the following conference series:

Abstract

Degree-k Voronoi domains of a periodic point set are concentric regions around a fixed centre consisting of all points in Euclidean space that have the centre as their k-th nearest neighbour. Periodic point sets generalise the concept of a lattice by allowing multiple points to appear within a unit cell of the lattice. Thus, periodic point sets model all solid crystalline materials (periodic crystals), and degree-k Voronoi domains of periodic point sets can be used to characterise the relative positions of atoms in a crystal from a fixed centre. The paper describes the first algorithm to compute all degree-k Voronoi domains up to any degree \(k\ge 1\) for any two or three-dimensional periodic point set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrew, R.C., Salagaram, T., Chetty, N.: Visualising higher order Brillouin zones with applications. Eur. J. Phys. 38(3), 035501 (2017)

    Article  Google Scholar 

  2. Anosova, O., Kurlin, V.: Introduction to periodic geometry and topology. arXiv:2103.02749 (2021)

  3. Anosova, O., Kurlin, V.: An isometry classification of periodic point sets. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 229–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_16

    Chapter  Google Scholar 

  4. Anosova, O., Kurlin, V.: Algorithms for continuous metrics on periodic crystals. arXiv:2205.15298 (2022)

  5. Anosova, O., Kurlin, V.: Density functions of periodic sequences. In: Discrete Geometry and Mathematical Morphology (2022)

    Google Scholar 

  6. Bright, M., Cooper, A., Kurlin, V.: Welcome to a continuous world of 3-dimensional lattices. arxiv:2109.11538 (2021)

  7. Bright, M.J., Cooper, A.I., Kurlin, V.A.: Geographic-style maps for 2-dimensional lattices. Acta Crystallographica Sect. A 79(1), (2023)

    Google Scholar 

  8. Chan, T.M.: Random sampling, halfspace range reporting, and construction of \(k\)-levels in three dimensions. SIAM J. Comput. 30(2), 561–575 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolbilin, N., Huson, D.: Periodic Delone tilings. Per. Math. Hung. 34, 57–64 (1997). https://doi.org/10.1023/A:1004272423695

    Article  MathSciNet  MATH  Google Scholar 

  10. Edelsbrunner, H., Garber, A., Ghafari, M., Heiss, T., Saghafian, M.: On angles in higher order brillouin tessellations and related tilings in the plane. arxiv:2204.01076

  11. Edelsbrunner, H., Garber, A., Ghafari, M., Heiss, T., Saghafian, M., Wintraecken, M.: Brillouin zones of integer lattices and their perturbations. arxiv:2204.01077

  12. Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P., Wintraecken, M.: The density fingerprint of a periodic point set. In: Symposium on Computational Geometry, pp. 32:1–32:16 (2021)

    Google Scholar 

  13. Edelsbrunner, H., Iglesias-Ham, M.: On the optimality of the FCC lattice for soft sphere packing. SIAM J. Discrete Math. 32(1), 750–782 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edelsbrunner, H., Osang, G.: A simple algorithm for higher-order Delaunay mosaics and alpha shapes. Algorithmica, 1–19 (2022). Springer

    Google Scholar 

  15. Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete Comput. Geom. 1(1), 25–44 (1986). https://doi.org/10.1007/BF02187681

    Article  MathSciNet  MATH  Google Scholar 

  16. Hart, G., Jorgensen, J., Morgan, W., Forcade, R.: A robust algorithm for k-point grid generation and symmetry reduction. J. Phys. Commun. 3(6), 065009 (2019)

    Article  Google Scholar 

  17. Kurlin, V.: Complete invariants for finite clouds of unlabeled points. arxiv:2207.08502

  18. Kurlin, V.: A complete isometry classification of 3D lattices. arxiv:2201.10543

  19. Kurlin, V.: Exactly computable and continuous metrics on isometry classes of finite and 1-periodic sequences. arXiv:2205.04388 (2022)

  20. Kurlin, V.A.: Mathematics of 2-dimensional lattices. Found. Comput. Math. (to appear)

    Google Scholar 

  21. Mosca, M., Kurlin, V.: Voronoi-based similarity distances between arbitrary crystal lattices. Cryst. Res. Technol. 55(5), 1900197 (2020)

    Article  Google Scholar 

  22. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. ACM Trans. Algorithms 5(4) (2009). https://doi.org/10.1145/1597036.1597050

  23. Osang, G., Rouxel-Labbé, M., Teillaud, M.: Generalizing CGAL periodic Delaunay triangulations. In: European Symposium on Algorithms, pp. 75:1–75:17 (2020)

    Google Scholar 

  24. Smith, P., Kurlin, V.: Families of point sets with identical 1D persistence. arxiv:2202.00577 (2022)

  25. TLP. https://www.doitpoms.ac.uk/tlplib/brillouin_zones/index.php

  26. Torda, M., Goulermas, J.Y., Kurlin, V., Day, G.M.: Densest plane group packings of regular polygons, Phys. Rev. E 106(5), 054603 (2022). APS

    Google Scholar 

  27. Vriza, A., et al.: Molecular set transformer: attending to the co-crystals in the Cambridge structural database. Digital Discovery (2022)

    Google Scholar 

  28. Widdowson, D., Kurlin, V.: Resolving the data ambiguity for periodic crystals. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35 (2022)

    Google Scholar 

  29. Widdowson, D., Mosca, M., Pulido, A., Cooper, A., Kurlin, V.: Average minimum distances of periodic sets. MATCH Commun. Math. Comput. Chem. 87, 529–559 (2022)

    Article  MATH  Google Scholar 

  30. Zhu, Q., et al.: Analogy powered by prediction and structural invariants. J. Am. Chem. Soc. 144, 9893–9901 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philip Smith or Vitaliy Kurlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smith, P., Kurlin, V. (2022). A Practical Algorithm for Degree-k Voronoi Domains of Three-Dimensional Periodic Point Sets. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20713-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20712-9

  • Online ISBN: 978-3-031-20713-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics