Skip to main content

PolypDEQ: Towards Effective Transformer-Based Deep Equilibrium Models for Colon Polyp Segmentation

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13598))

Included in the following conference series:

  • 620 Accesses

Abstract

Recent neural networks have shown impressive performance in computer vision tasks. However, these models mainly focus on designing deep architectures and strongly depend on the architectures themselves. This paper proposes a simple yet effective deep equilibrium model (DEQ) that exploits the advantages of implicit deep learning and multi-scale self-attention. In particular, our approach reduces the need for simultaneously finding multiple fixed points at different scales in Multi-scale Deep Equilibrium Models (MDEQs) to finding a unique fixed point at the highest resolution. Therefore, our method is more memory efficient and requires less computational complexity. To the best of our knowledge, this is the first attempt toward building an effective DEQ for polyp segmentation, and thus, we call the model PolypDEQ. Experiments on five popular polyp segmentation benchmarks show that our proposed method yields superior performance compared to previous MDEQ and Transformers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, N.S., et al.: BlazeNeo: blazing fast polyp segmentation and neoplasm detection. IEEE Access 10, 43669–43684 (2022)

    Article  Google Scholar 

  2. Bai, S., Kolter, J.Z., Koltun, V.: Deep equilibrium models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  3. Bai, S., Koltun, V., Kolter, J.Z.: Multiscale deep equilibrium models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 5238–5250 (2020)

    Google Scholar 

  4. Bai, S., Koltun, V., Kolter, J.Z.: Neural deep equilibrium solvers. In: International Conference on Learning Representations (2021)

    Google Scholar 

  5. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Article  Google Scholar 

  6. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  7. Duc, N.T., Oanh, N.T., Thuy, N.T., Triet, T.M., Dinh, V.S.: ColonFormer: an efficient transformer based method for colon polyp segmentation. IEEE Access 10, 80575–80586 (2022)

    Article  Google Scholar 

  8. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hung, N.B., Duc, N.T., Van Chien, T., Sang, D.V.: AG-ResUNet++: an improved encoder-decoder based method for polyp segmentation in colonoscopy images. In: 2021 RIVF International Conference on Computing and Communication Technologies (RIVF), pp. 1–6. IEEE (2021)

    Google Scholar 

  11. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  12. Jha, D., et al.: ResUNet++: an advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255 (2019). https://doi.org/10.1109/ISM46123.2019.00049

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  14. Ngoc Lan, P., et al.: NeoUNet: towards accurate colon polyp segmentation and neoplasm detection. In: Bebis, G., et al. (eds.) ISVC 2021. LNCS, vol. 13018, pp. 15–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90436-4_2

    Chapter  Google Scholar 

  15. Pal, A., Edelman, A., Rackauckas, C.: Mixing implicit and explicit deep learning with skip DEQs and infinite time neural odes (continuous DEQs). arXiv preprint arXiv:2201.12240 (2022)

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)

    Article  Google Scholar 

  18. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)

    Article  Google Scholar 

  19. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthcare Eng. 2017 (2017)

    Google Scholar 

  20. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 12077–12090 (2021)

    Google Scholar 

  21. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  22. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was funded by Vingroup Innovation Foundation (VINIF) under project code VINIF.2020.DA17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Viet Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chau, N.M., Giang, L.T., Sang, D.V. (2022). PolypDEQ: Towards Effective Transformer-Based Deep Equilibrium Models for Colon Polyp Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20713-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20712-9

  • Online ISBN: 978-3-031-20713-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics