Skip to main content

Brain Shape Correspondence Analysis Using Functional Maps

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Abstract

Modeling neurodevelopment in brain asphyxia is a crucial task in pediatric medical imaging. One of the significant challenges is that brain structures that are affected by encephalopathy lose their mass due to the injury. Thus, quantifying neurodevelopmental changes is often performed using 2D approaches where the neuroradiologist performs fiducial landmarks to monitor clinical outcomes. We showed how non-rigid correspondence analysis allows relevant quantification of shape relations on brain structures. We use functional maps to automatically compute shape correspondences based on partially observed 3D shapes (i.e., affected brain areas). We perform the brain structure representation as partial functional correspondences between the affected brain area at a post-injury time and model shapes related to the first brain representation (i.e., the first month after birth). Hence, eigenfunctions with the Laplace-Beltrami operator are computed from the training shapes. Then, we apply an optimization process where fine-tuning the functional maps results in meaningful matches between brain structures. The experimental results show that our approach computes reliability correspondences, and establishes candidate matches for robust neurodevelopmental quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  2. Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Monographs in Computer Science, Springer, New York (2009). https://books.google.com.co/books?id=de2jrRCNpwEC

  3. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1704–1711. IEEE (2010)

    Google Scholar 

  4. Dyke, R.M., et al.: SHREC’20: shape correspondence with non-isometric deformations. Comput. Graph. 92, 28–43 (2020)

    Article  Google Scholar 

  5. Eynard, D., Rodola, E., Glashoff, K., Bronstein, M.M.: Coupled functional maps. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 399–407. IEEE (2016)

    Google Scholar 

  6. Gousias, I., et al.: Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants. Neuroimage 62(3), 1499–1509 (2012). https://doi.org/10.1016/j.neuroimage.2012.05.083. Sep

    Article  Google Scholar 

  7. Huang, Q., Wang, F., Guibas, L.: Functional map networks for analyzing and exploring large shape collections. ACM Trans. Graph. 33(4) (2014). https://doi.org/10.1145/2601097.2601111

  8. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29, 1 (2010). https://doi.org/10.1145/1833351.1778839

  9. Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2013)

    Article  Google Scholar 

  10. Ovsjanikov, M.: Shape correspondence and functional maps. In: Handbook of Numerical Analysis, vol. 19, pp. 91–118. Elsevier (2018)

    Google Scholar 

  11. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4) (2012). https://doi.org/10.1145/2185520.2185526

  12. Rustamov, R.M., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas, L.: Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graph. 32(4) (2013). https://doi.org/10.1145/2461912.2461959

  13. Setumin, S., Aminudin, M.F.C., Suandi, S.A.: Canonical correlation analysis feature fusion with patch of interest: a dynamic local feature matching for face sketch image retrieval. IEEE Access 8, 137342–137355 (2020)

    Article  Google Scholar 

  14. Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Computer Graphics Forum, vol. 30, pp. 1681–1707. Wiley Online Library (2011)

    Google Scholar 

  15. Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2D shape deformation using nonlinear least squares optimization. Visual Comput. 22, 653–660 (2006). https://doi.org/10.1007/s00371-006-0054-y

  16. Zöllei, L., Iglesias, J.E., Ou, Y., Grant, P.E., Fischl, B.: Infant FreeSurfer: an automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years. Neuroimage 218, 116946 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Ministry of Sciences of Colombia for financing the project with code 4979-844-67090, CTO 858-2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernan F. Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arias-Garcia, J., Garcia, H.F., Orozco, Á.A., Porras-Hurtado, G.L., Cárdenas-Peña, D.A., Ríos-Patiño, J.I. (2022). Brain Shape Correspondence Analysis Using Functional Maps. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20716-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20715-0

  • Online ISBN: 978-3-031-20716-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics