Skip to main content

A Quantitative Analysis of Redirected Walking in Virtual Reality Using Saccadic Eye Movements

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Abstract

In this work we investigated redirected walking in virtual reality using saccadic eye movements to determine when to rotate the participant in their virtual environment. We tested participants by placing them into a virtual environment where they worked on completing a series of simple tasks while being rotated according to their saccadic eye movements at a randomized degree of rotation. After testing, our results displayed a marked difference between the participant’s movement in the virtual environment versus the real-world environment. This difference shows the potential of using saccadic eye movement to keep a user immersed even within a smaller than optimal play area.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Foxlin, E., Harrington, M., Pfeifer, G.: Constellation: A wide-range wireless motion-tracking system for augmented reality and virtual set applications. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pp. 371–378. Association for Computing Machinery, New York (1998). https://doi.org/10.1145/280814.280937. ISBN 0897919998

  2. Ng, A.K.T., Chan, L.K.Y., Lau, H.Y.K.: A low-cost lighthouse-based virtual reality head tracking system. In: 2017 International Conference on 3D Immersion (IC3D), pp 1–5 (2017). https://doi.org/10.1109/IC3D.2017.8251910

  3. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006). https://doi.org/10.1109/MRA.2006.1638022

    Article  Google Scholar 

  4. Boletsis, C., Cedergren, J.E.: Vr locomotion in the new era of virtual reality: An empirical comparison of prevalent techniques. In: Advances in Human-Computer Interaction (2019). https://doi.org/10.1155/2019/7420781

  5. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point and teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY 2016, pp. 205–216. Association for Computing Machinery, New York (2016) . https://doi.org/10.1145/2967934.2968105. ISBN 9781450344562

  6. Regan, C.: An investigation into nausea and other side-effects of head-coupled immersive virtual reality. In: Virtual Reality, vol. 1. https://doi.org/10.1007/BF02009710 (1995)

  7. Gavgani, A.M., Walker, F.R., Hodgson, D.M., Nalivaiko, E.: A comparative study of cybersickness during exposure to virtual reality and "classic" motion sickness: are they different? J. Appli. Physiol. 125(6): 1670–1680 (2018). https://doi.org/10.1152/japplphysiol.00338.2018

  8. Wilson, P.T., Kalescky, W., MacLaughlin, A., Williams, B.: Vr locomotion: walking \(>\) walking in place\(>\) arm swinging. In: Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry, vol. 1, pp. 243–249 (2016)

    Google Scholar 

  9. McCullough, M., et al.: Myo arm: swinging to explore a ve. In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception, pp. 107–113 (2015)

    Google Scholar 

  10. Harris, A., Nguyen, K., Wilson, P.T., Jackoski, M., Williams, B.: Human joystick: Wii-leaning to translate in large virtual environments. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 231–234 (2014)

    Google Scholar 

  11. Nabiyouni, M., Saktheeswaran, A., Bowman, D.A., Karanth, A.: Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. In: 2015 IEEE Symposium on 3D User Interfaces (3DUI), pp.–10. IEEE (2015)

    Google Scholar 

  12. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium On Computer-human Interaction In Play, pp. 205–216 (2016)

    Google Scholar 

  13. Tregillus, S., Folmer, E.: Vr-step: Walking-in-place using inertial sensing for hands free navigation in mobile vr environments. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1250–1255 (2016)

    Google Scholar 

  14. Habgood, M.P.J., Moore, D., Wilson, D., Alapont, S.: Rapid, continuous movement between nodes as an accessible virtual reality locomotion technique. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 371–378. IEEE (2018)

    Google Scholar 

  15. Zuber, B.L., Stark, L.: Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Experimental Neurol. 16(1), 65–79 (1966). https://doi.org/10.1016/0014-4886(66)90087-2. https://www.sciencedirect.com/science/article/pii/0014488666900872 ISSN 0014–4886

  16. Sun, Q., et al.: Towards virtual reality infinite walking: Dynamic saccadic redirection. ACM Trans. Graph. 37(4) (2018). https://doi.org/10.1145/3197517.3201294 ISSN 0730–0301

  17. Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, ETRA 2000, pp. 71–78. Association for Computing Machinery, New York (2000). https://doi.org/10.1145/355017.355028 ISBN 1581132808

  18. IJsselsteijn, W.A., de Kort, Y.A.W., Poels, K.: The Game Experience Questionnaire. Technische Universiteit Eindhoven (2013)

    Google Scholar 

  19. Lontschar, S., Deegan, D., Humer, I., Pietroszek, K., Eckhardt, C.: Analysis of haptic feedback and its influences in virtual reality learning environments. In: 2020 6th International Conference of the Immersive Learning Research Network (iLRN), pp. 171–177 (2020). https://doi.org/10.23919/iLRN47897.2020.9155087

  20. Trevor, B., Jason, L., Irene, H., Christian, E.: Immersive learning for scale and order of magnitude in newtonian mechanics. In: Beck, D., et al. (eds.) iLRN 2019. CCIS, vol. 1044, pp. 30–42. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23089-0_3

  21. Gregory, C., Irene, H., Christian, E.: Special relativity in immersive learning. In: Beck, D., et al. (eds.) iLRN 2019. CCIS, vol. 1044, pp. 16–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23089-0_2

  22. Lontschar, S., Pietroszek, K., Humer, I., Eckhardt, C.: An immersive and interactive visualization of gravitational waves. In: 2020 6th International Conference of the Immersive Learning Research Network (iLRN), pp. 178–184 (2020). https://doi.org/10.23919/iLRN47897.2020.9155149

  23. Fujiwara, D., Kellar, K., Humer, I., Pietroszek, K., Eckhardt, C.: Vsepr theory, an interactive and immersive virtual reality. In 2020 6th International Conference of the Immersive Learning Research Network (iLRN), pp. 140–146 (2020

    Google Scholar 

  24. Sipatchin, A., Wahl, S., Rifai, K.: Eye-tracking for low vision with virtual reality (vr): testing status quo usability of the htc vive pro eye (2020).https://doi.org/10.1101/2020.07.29.220889. www.biorxiv.org/content/early/2020/07/29/2020.07.29.220889

  25. Sipatchin, A., Wahl, S., Rifai, K.: An immersive and interactive visualization of gravitational waves. In: 2020 6th International Conference of the Immersive Learning Research Network (iLRN), pp. 178–184, (2020). https://doi.org/10.23919/iLRN47897.2020.9155149

  26. Sipatchin, A., Wahl, S., Rifai, K.: Eye-tracking for clinical ophthalmology with virtual reality (vr): A case study of the htc vive pro eye’s usability. Healthcare 9(2), 2021. https://doi.org/10.3390/healthcare9020180. www.mdpi.com/2227-9032/9/2/180 ISSN 2227–9032

  27. Stein,N., et al.: A comparison of eye tracking latencies among several commercial head-mounted displays. i-Perception 12(1), 2041669520983338 (2021). https://doi.org/10.1177/2041669520983338

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Eckhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davis, K., Hayase, T., Humer, I., Woodard, B., Eckhardt, C. (2022). A Quantitative Analysis of Redirected Walking in Virtual Reality Using Saccadic Eye Movements. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20716-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20715-0

  • Online ISBN: 978-3-031-20716-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics