Skip to main content

Biomimetic Oculomotor Control with Spiking Neural Networks

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13599))

Included in the following conference series:

Abstract

Spiking neural networks (SNNs) are comprised of artificial neurons that, like their biological counterparts, communicate via electrical spikes. We develop and train a biomimetic, SNN-driven, neuromuscular oculomotor controller for a realistic biomechanical model of the human eye. Event-based data flow in the SNN directs the necessary extraocular-muscle-actuated eye movements. We train our SNN models from scratch using modified deep learning techniques. We use surrogate gradients and introduce a linear layer to convert membrane voltages from the final spiking layer into the desired outputs. Our SNN foveation network enhances the biomimetic properties of the virtual eye model and enables it to perform reliable visual tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bekolay, T., et al.: Nengo: a Python tool for building large-scale functional brain models. Front. Neuroinformat. 7(48), 1–13 (2014)

    Google Scholar 

  2. Bouvier, M., et al.: Spiking neural networks hardware implementations and challenges: a survey. ACM J. on Emerging Technol. Comput. Syst. 15(2) (2019)

    Google Scholar 

  3. Diehl, P., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9 (2015)

    Google Scholar 

  4. Diehl, P.U., Neil, D., Binas, J., Cook, M., Liu, S.C., Pfeiffer, M.: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015)

    Google Scholar 

  5. Eshraghian, J.K., et al.: Training spiking neural networks using lessons from deep learning. arXiv preprint arXiv:2109.12894 (2021)

  6. Gehrig, M., Shrestha, S.B., Mouritzen, D., Scaramuzza, D.: Event-based angular velocity regression with spiking networks. CoRR abs/2003.02790 (2020)

    Google Scholar 

  7. Jose, J.T., Amudha, J., Sanjay, G.: A survey on spiking neural networks in image processing. In: El-Alfy, E.-S.M., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T. (eds.) Advances in Intelligent Informatics. AISC, vol. 320, pp. 107–115. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11218-3_11

    Chapter  Google Scholar 

  8. Kim, S., Park, S., Na, B., Yoon, S.: Spiking-YOLO: spiking neural network for energy-efficient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence 34(07), pp. 11270–11277 (2020)

    Google Scholar 

  9. Lakshmipathi, A.S.: Biomimetic modeling of the eye and deep NeuroMuscular oculomotor control. Master’s thesis, University of California, Los Angeles (2018)

    Google Scholar 

  10. Maqueda, A.I., Loquercio, A., Gallego, G., Garcia, N., Scaramuzza, D.: Event-based vision meets deep learning on steering prediction for self-driving cars. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  11. Nakada, M., Chen, H., Lakshmipathy, A., Terzopoulos, D.: Locally-connected, irregular deep neural networks for biomimetic active vision in a simulated human. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 4465–4472 (2021)

    Google Scholar 

  12. Nakada, M., Lakshmipathy, A., Chen, H., Ling, N., Zhou, T., Terzopoulos, D.: Biomimetic eye modeling & deep neuromuscular oculomotor control. ACM Trans. Graph. 38(6) (2019)

    Google Scholar 

  13. Nakada, M., Zhou, T., Chen, H., Weiss, T., Terzopoulos, D.: Deep learning of biomimetic sensorimotor control for biomechanical human animation. ACM Trans. Graph. 37(4) (2018)

    Google Scholar 

  14. Neftci, E.O., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Process. Mag. 36(6), 51–63 (2019)

    Article  Google Scholar 

  15. Purves, D., Augustine, G., Fitzpatrick, D., et al.: Anatomical distribution of rods and cones. Sinauer Associates (2001)

    Google Scholar 

  16. Rueckauer, B., Lungu, I.A., Hu, Y., Pfeiffer, M., Liu, S.C.: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front. Neurosci. 11 (2017)

    Google Scholar 

  17. Rullen, R., Thorpe, S.: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13, 1255–1283 (2001)

    Article  MATH  Google Scholar 

  18. Schraa-Tam, C., Lugt, A., Frens, M., Smits, M., Broekhoven, P., Geest, J.: An fMRI study on smooth pursuit and fixation suppression of the optokinetic reflex using similar visual stimulation. Exp. Brain Res. 185, 535–44 (2008)

    Article  Google Scholar 

  19. Sengupta, A., Ye, Y., Wang, R., Liu, C., Roy, K.: Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 13 (2019)

    Google Scholar 

  20. Shirley, P., Morley, R.K.: Realistic Ray Tracing, 2nd edn. A. K. Peters Ltd, Natick, MA, USA (2003)

    Book  Google Scholar 

  21. Tayarani-Najaran, M.H., Schmuker, M.: Event-based sensing and signal processing in the visual, auditory, and olfactory domain: a review. Front. Neural Circuits 15 (2021)

    Google Scholar 

  22. Thomas, J.G.: The dynamics of small saccadic eye movements. J. Physiol. 200(1), 109–127 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Arjun Lakshmipathy and Masaki Nakada for providing their software and otherwise assisting with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taasin Saquib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saquib, T., Terzopoulos, D. (2022). Biomimetic Oculomotor Control with Spiking Neural Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20716-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20715-0

  • Online ISBN: 978-3-031-20716-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics