Abstract
Accurate breast cancer diagnosis through mammography has the potential to save millions of lives around the world. Deep learning (DL) methods have shown to be very effective for mass detection in mammograms Additional improvements of current DL models will further improve the effectiveness of these methods. A critical issue in this context is how to pick the right hyperparameters for DL models. In this paper, we present GA-E2E, a new approach for tuning the hyperparameters of DL models for breast cancer detection using Genetic Algorithms (GAs). Our findings reveal that differences in parameter values can considerably alter the area under the curve (AUC), which is used to determine a classifier’s performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aboutalib, S.S., Mohamed, A.A., Berg, W.A., Zuley, M.L., Sumkin, J.H., Wu, S.: Deep learning to distinguish recalled but benign mammography images in breast cancer screeningdeep learning in mammography. Clin. Cancer Res. 24(23), 5902–5909 (2018)
Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Convolutional neural networks for mammography mass lesion classification. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 797–800. IEEE (2015)
Bäck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 1: Basic Algorithms and Operators. CRC Press, Boca Raton (2018)
Benitez-Hidalgo, A., Nebro, A.J., Garcia-Nieto, J., Oregi, I., Del Ser, J.: jmetalpy: a python framework for multi-objective optimization with metaheuristics. Swarm Evol. Comput. 51, 100598 (2019)
Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem?(and a dataset of 230,000 3D facial landmarks). In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1021–1030 (2017)
Ciresan, D., Giusti, A., Gambardella, L., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: 25th Proceedings of the Conference on Advances in Neural Information Processing Systems (2012)
Cole, E.B., Zhang, Z., Marques, H.S., Hendrick, R.E., Yaffe, M.J., Pisano, E.D.: Impact of computer-aided detection systems on radiologist accuracy with digital mammography. AJR Am. J. Roentgenol. 203(4), 909 (2014)
Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, Washington, DC (1991)
De Jong, K.: Learning with genetic algorithms: an overview. Mach. Learn. 3(2–3), 121–138 (1988)
Deb, K., Agrawal, R.B., et al.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)
Elter, M., Horsch, A.: Cadx of mammographic masses and clustered microcalcifications: a review. Med. Phy. 36(6Part1), 2052–2068 (2009)
Fenton, J.J., et al.: Influence of computer-aided detection on performance of screening mammography. N. Engl. J. Med. 356(14), 1399–1409 (2007)
Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
Jamieson, A.R., Drukker, K., Giger, M.L.: Breast image feature learning with adaptive deconvolutional networks. In: Medical Imaging 2012: Computer-Aided Diagnosis, vol. 8315, pp. 64–76. SPIE (2012)
Jiang, J., Yao, B., Wason, A.: A genetic algorithm design for microcalcification detection and classification in digital mammograms. Comput. Med. Imaging Graph. 31(1), 49–61 (2007)
Kooi, T., et al.: Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4(1), 1–9 (2017)
Lehman, C.D., et al.: National performance benchmarks for modern screening digital mammography: update from the breast cancer surveillance consortium. Radiology 283(1), 49–58 (2017)
Lehman, C.D., et al.: Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Int. Med. 175(11), 1828–1837 (2015)
Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)
Oeffinger, K.C., et al.: Breast cancer screening for women at average risk: 2015 guideline update from the American cancer society. J. Am. Med. Assoc. 314(15), 1599–1614 (2015)
Prügel-Bennett, A.: When a genetic algorithm outperforms hill-climbing. Theoret. Comput. Sci. 320(1), 135–153 (2004)
Rodríguez-Ruiz, A., et al.: Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 290(2), 305–314 (2019)
Rodriguez-Ruiz, A., et al.: Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J. Natl. Cancer Inst. 111(9), 916–922 (2019)
Sehgal, A.: Genetic algorithm as function optimizer in reinforcement learning and sensor odometry. Master’s thesis, University of Nevada, Reno (2019)
Sehgal, A., La, H., Louis, S., Nguyen, H.: Deep reinforcement learning using genetic algorithm for parameter optimization. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 596–601. IEEE (2019)
Sehgal, A., Singandhupe, A., La, H.M., Tavakkoli, A., Louis, S.J.: Lidar-monocular visual odometry with genetic algorithm for parameter optimization. In: Bebis, G., et al. (eds.) ISVC 2019. LNCS, vol. 11845, pp. 358–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33723-0_29
Sehgal, A., Ward, N., La, H., Louis, S.: Automatic parameter optimization using genetic algorithm in deep reinforcement learning for robotic manipulation tasks. arXiv preprint arXiv:2204.03656 (2022)
Sehgal, A., Ward, N., La, H.M., Papachristos, C., Louis, S.: GA-DRL: genetic algorithm-based function optimizer in deep reinforcement learning for robotic manipulation tasks. arXiv preprint arXiv:2203.00141 (2022)
Shen, L., Margolies, L.R., Rothstein, J.H., Fluder, E., McBride, R., Sieh, W.: Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 9(1), 1–12 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Smith, R.A., et al.: American cancer society guidelines for breast cancer screening: update 2003. Cancer j. Clin. 53(3), 141–169 (2003)
Sun, Y., Babbs, C., Delp, E.: A comparison of feature selection methods for the detection of breast cancers in mammograms: adaptive sequential floating search vs. genetic algorithm. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 6532–6535. IEEE (2006)
Timmers, J., et al.: The breast imaging reporting and data system (BI-RADS) in the Dutch breast cancer screening programme: its role as an assessment and stratification tool. Eur. Radiol. 22(8), 1717–1723 (2012)
Verma, B., Zhang, P.: A novel neural-genetic algorithm to find the most significant combination of features in digital mammograms. Appl. Soft Comput. 7(2), 612–625 (2007)
Wahde, M.: Biologically Inspired Optimization Methods: An Introduction. WIT Press (2008)
Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)
Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster computing with working sets. In: 2nd USENIX Workshop on Hot Topics in Cloud Computing, (HotCloud 2010) (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sehgal, A., Sehgal, M., La, H.M., Bebis, G. (2022). Deep Learning Hyperparameter Optimization for Breast Mass Detection in Mammograms. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-20716-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20715-0
Online ISBN: 978-3-031-20716-7
eBook Packages: Computer ScienceComputer Science (R0)