Skip to main content

Analysis of Deep Learning-Based Image Steganalysis Methods Under Different Steganographic Algorithms

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13599))

Included in the following conference series:

  • 719 Accesses

Abstract

In this paper, we present an experiment to evaluate the performance of deep-learning-based steganalysis methods under different steganographic algorithms and payloads. We designed and implemented a simple and efficient convolutional neural network (CNN) steganalysis model. This model combines SRM [10] filters and 2D Gabor filters to initialize the CNN’s filters in the feature extraction layers. The extracted features are passed to a fully connected neural network classifier to detect images containing hidden messages. We generated several datasets using different steganographic algorithms and payloads to train and test our CNN model. We designed several experiments to evaluate the detection rate of the proposed model under separate training-testing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, J., et al.: Recent advances of image steganography with generative adversarial networks. IEEE Access 8, 60575–60597 (2020). https://doi.org/10.1109/ACCESS.2020.2983175

    Article  Google Scholar 

  2. Pevny, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: International Workshop on Information Hiding, pp. 161–177 (2010). https://doi.org/10.1007/978-3-642-16435-4_13

  3. Sedighi, V., Cogranne, R., Fridrich, J.: Content-Adaptive Steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234 (2016). https://doi.org/10.1109/TIFS.2015.2486744

  4. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Sec. 1(1)(2014). https://doi.org/10.1186/1687-417X-2014-1

  5. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239 (2012).https://doi.org/10.1109/WIFS.2012.6412655

  6. Chandramouli, Rajarathnam, Kharrazi, Mehdi, Memon, Nasir: Image steganography and steganalysis: concepts and practice. In: Kalker, Ton, Cox, Ingemar, Ro, Yong Man (eds.) IWDW 2003. LNCS, vol. 2939, pp. 35–49. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24624-4_3

    Chapter  Google Scholar 

  7. English, R.: Comparison of high capacity steganography techniques. In: 2010 International Conference of Soft Computing and Pattern Recognition, pp. 448–453 (2010). https://doi.org/10.1109/SOCPAR.2010.5686507

  8. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017). https://doi.org/10.1109/TIFS.2017.2710946

    Article  Google Scholar 

  9. Fridrich, J., Kodovsky, J.: Rich Models for Steganalysis of Digital Images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012). https://doi.org/10.1109/TIFS.2012.2190402

    Article  Google Scholar 

  10. Vojtech, O., Fridrich, J.: Digital image steganography using universal distortion. In: ACM Workshop on Information Hiding and Multimedia Security, Association for Computing Machinery (2013)

    Google Scholar 

  11. Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012). https://doi.org/10.1109/TIFS.2011.2175919

    Article  Google Scholar 

  12. Tan, S., Li, B.: Stacked convolutional auto-encoders for steganalysis of digital images. In: Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014, Asia-Pacific, pp. 1–4 (2014). https://doi.org/10.1109/APSIPA.2014.7041565

  13. Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for Steganalysis via convolutional neural networks. In: Media Watermarking, Security, and Forensics 2015, vol. 9409, pp. 171–180, March 2015. https://doi.org/10.1117/12.2083479

  14. Pibre, L., Pasquet, J., Ienco, D., Chaumont, M.: Deep learning is a good Steganalysis Tool when embedding key is reused for different images, even if there is a cover source mismatch. Electr. Imag. Media Watermark. Secur. Forensics 2016(8), 1–11 (2016). https://doi.org/10.2352/ISSN.2470-1173.2016.8.MWSF-078

    Article  Google Scholar 

  15. Xu, G., Wu, H.-Z., Shi, Y.-Q.: Structural design of convolutional neural networks for Steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016). https://doi.org/10.1109/LSP.2016.2548421

    Article  Google Scholar 

  16. Yu, J., Li, F., Cheng, H., Zhang, X.: Spatial Steganalysis Using Contrast of Residuals. IEEE Signal Process. Lett. 23(7), 989–992 (2016). https://doi.org/10.1109/LSP.2016.2575100

    Article  Google Scholar 

  17. Sedighi, V., Fridrich, J.: Histogram layer, moving convolutional neural networks towards feature-based Steganalysis. Electr. Imag. Media Watermark. Secur. Forensics 2017(6), 50–55 (2017). https://doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-325

    Article  Google Scholar 

  18. Yedroudj, M., Comby, F., Chaumont, M.: Yedroudj-Net: an efficient CNN for spatial Steganalysis. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2092–2096 (2018). https://doi.org/10.1109/ICASSP.2018.8461438

  19. El Beji, R., Saidi, M., Hermassi, H., Rhouma, R.: An improved CNN Steganalysis architecture based on catalyst kernels and transfer learning. International Conference on Digital Economy 325, 119–128 (2018). https://doi.org/10.1007/978-3-319-97749-2_9

    Article  Google Scholar 

  20. Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for Steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2019). https://doi.org/10.1109/TIFS.2018.2871749

    Article  Google Scholar 

  21. Zhang, R., Zhu, F., Liu, J., Liu, G.: Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based Steganalysis. IEEE Trans. Inf. Forensics Secur. 15, 1138–1150 (2020). https://doi.org/10.1109/TIFS.2019.2936913

    Article  Google Scholar 

  22. Arivazhagan, S., Amrutha, E., Sylvia Lilly Jebarani, W., Veena, S.T.: Hybrid convolutional neural network architecture driven by residual features for steganalysis of spatial steganographic algorithms. Neural Comput. Appl. 33, 11465–11485 (2021). https://doi.org/10.1007/s00521-021-05837-7

  23. Reinel, T.-S., et al.: GBRAS-Net: a convolutional neural network architecture for spatial image Steganalysis. IEEE Access 9, 14340–14350 (2021). https://doi.org/10.1109/ACCESS.2021.3052494

    Article  Google Scholar 

  24. Chen, M., Sedighi, V., Boroumand, M., Fridrich, J.: JPEG-phase-aware convolutional neural network for steganalysis of JPEG images. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 75–84 (2017). https://doi.org/10.1145/3082031.3083248

  25. Song, X., Liu, F., Yang, F.G., Luo, X., Zhang, Y.: Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In: Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, pp. 15–23 (2015). https://doi.org/10.1145/2756601.2756608

  26. Bas, P., Filler, T., Pevny, T.: Break our steganographic system: the ins and outs of organizing BOSS. International Workshop on Information Hiding 6958, 59–70 (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Article  Google Scholar 

  27. Holub, V., Sedighi, V., Denemark, T., Fridrich, J.: Steganographic Algorithms. DDE Lab at Binghamton University, NY (2012). http://dde.binghamton.edu/download/stego_algorithms/. Accessed 13 Apr 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Belkhouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dwaik, A., Belkhouche, Y. (2022). Analysis of Deep Learning-Based Image Steganalysis Methods Under Different Steganographic Algorithms. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20716-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20715-0

  • Online ISBN: 978-3-031-20716-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics