Skip to main content

Driver State Detection from In-Car Camera Images

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13599))

Included in the following conference series:

Abstract

A non-neglectable number of car accidents are caused by driver’s loss of ability to drive the car, which may be caused by serious health problems, e.g. heart attack, stroke, drug or alcohol influence, as well as by drowsiness and other problems. In this paper, a method is presented for detecting the anomaly situations during driving. The method is based on detecting the particular parts of driver’s body in the sequence of images obtained from an in-car camera. A feature vector containing the distances between the body parts and describing the situation in a chosen number of frames is computed and used for detection. For the detection itself, the neural network of the autoencoder type containing the LSTM units is used. The method is compared with some other methods; the results show that the method is useful. Moreover, the video sequences used for training and testing are presented, which may be regarded as an additional contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015).http://tensorflow.org/, software available from tensorflow.org

  2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000). 10.1145/335191.335388

    Google Scholar 

  3. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields (2018). 10.48550/ARXIV.1812.08008, https://arxiv.org/abs/1812.08008

  4. Chollet, F., et al.: Keras (2015).https://keras.io

  5. Fusek, R., et al.: MRL driver dataset (September 2022). http://mrl.cs.vsb.cz/driverdataset

  6. Goodfellow, I.J., et al.: Generative adversarial networks (2014). https://doi.org/10.48550/ARXIV.1406.2661, https://arxiv.org/abs/1406.2661

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://doi.org/10.48550/ARXIV.1512.03385

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (12 1997). https://doi.org/10.1162/neco.1997.9.8.1735

  9. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 0.5mb model size (2016). https://doi.org/10.48550/ARXIV.1602.07360, https://arxiv.org/abs/1602.07360

  10. Choi, I.-H., Hong, S.K., Kim, Y.-G.: Real-time categorization of driver’s gaze zone using the deep learning techniques. In: 2016 International Conference on Big Data and Smart Computing (BigComp), pp. 143–148 (2016)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). https://doi.org/10.48550/ARXIV.1312.6114, https://arxiv.org/abs/1312.6114

  12. Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos (2018). https://doi.org/10.48550/ARXIV.1801.03149, https://arxiv.org/abs/1801.03149

  13. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: 25th Proceedings of the Conference on Neural Information Processing Systems, January 2012. https://doi.org/10.1145/3065386

  14. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining.,pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17

  15. Liu, L., et al.: A novel fatigue driving state recognition and warning method based on EEG and EOG signals. J. Healthc. Eng. 2021, 1–10 (2021). https://doi.org/10.1155/2021/7799793

  16. Lugaresi, C., et al.: Mediapipe: a framework for building perception pipelines (2019). https://doi.org/10.48550/ARXIV.1906.08172, https://arxiv.org/abs/1906.08172

  17. Martin, M., et al.: Drive & act: a multi-modal dataset for fine-grained driver behavior recognition in autonomous vehicles. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  18. Naqvi, R.A., Arsalan, M., Batchuluun, G., Yoon, H.S., Park, K.R.: Deep learning-based gaze detection system for automobile drivers using a Nir camera sensor. Sensors 18(2) (2018). https://doi.org/10.3390/s18020456https://www.mdpi.com/1424-8220/18/2/456

  19. Nguyen, H., Tran, K., Thomassey, S., Hamad, M.: Forecasting and anomaly detection approaches using lSTM and LSTM autoencoder techniques with the applications in supply chain management. Int. J. Inf. Manag. 57, 102282 (2021). https://doi.org/10.1016/j.ijinfomgt.2020.102282, https://www.sciencedirect.com/science/article/pii/S026840122031481X

  20. Osokin, D.: Real-time 2D multi-person pose estimation on CPU: Lightweight openpose (2018). https://doi.org/10.48550/ARXIV.1811.12004, https://arxiv.org/abs/1811.12004

  21. Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999). https://doi.org/10.1080/00401706.1999.10485670

    Article  Google Scholar 

  22. Ruff, L., et al.: Deep one-class classification. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 4393–4402. PMLR, Stockholmsmässan, Stockholm Sweden (10–15 Jul 2018), http://proceedings.mlr.press/v80/ruff18a.html

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556

  24. Vora, S., Rangesh, A., Trivedi, M.M.: On generalizing driver gaze zone estimation using convolutional neural networks. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 849–854 (2017)

    Google Scholar 

  25. Williams, C., Seeger, M.: Using the nyström method to speed up kernel machines. In: Leen, T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing Systems. vol. 13. MIT Press (2000)

    Google Scholar 

  26. Yan, X., He, J., Wu, G., Zhang, C., Wang, C.: A proactive recognition system for detecting commercial vehicle driver’s distracted behavior. Sensors 22(6) (2022). https://doi.org/10.3390/s22062373, https://www.mdpi.com/1424-8220/22/6/2373

  27. Yang, T., Li, Y.f., Mahdavi, M., Jin, R., Zhou, Z.H.: Nyström method vs random fourier features: a theoretical and empirical comparison. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems. vol. 25. Curran Associates, Inc. (2012)

    Google Scholar 

  28. Yoon, H.S., Baek, N.R., Truong, N.Q., Park, K.R.: Driver gaze detection based on deep residual networks using the combined single image of dual near-infrared cameras. IEEE Access 7, 93448–93461 (2019)

    Google Scholar 

  29. Zhao, R., Wang, K., Su, H., Ji, Q.: Bayesian graph convolution LSTM for skeleton based action recognition. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6881–6891, October 2019. https://doi.org/10.1109/ICCV.2019.00698

  30. Zhu, W., et al.: Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3697–3703. AAAI’16, AAAI Press (2016)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by Grants of SGS No. SP2022/81, VSB - Technical University of Ostrava, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Fusek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fusek, R., Sojka, E., Gaura, J., Halman, J. (2022). Driver State Detection from In-Car Camera Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20716-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20715-0

  • Online ISBN: 978-3-031-20716-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics