Skip to main content

Transferability Limitations for Covid 3D Localization Using SARS-CoV-2 Segmentation Models in 4D CT Images

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Abstract

In this paper, we investigate the transferability limitations when using deep learning models, for semantic segmentation of pneumonia-infected areas in CT images. The proposed approach adopts a 4 channel input; 3 channels based on Hounsfield scale, plus one channel (binary) denoting the lung area. We used 3 different, publicly available, CT datasets. If the lung area mask was not available, a deep learning model generates a proxy image. Experimental results suggest that transferability should be used carefully, when creating Covid segmentation models; retraining the model more than one times in large sets of data results in a decrease in segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. COVID-19 Map (2022). https://coronavirus.jhu.edu/map.html

  2. Statement on the tenth meeting of the International Health Regulations: emergency Committee regarding the coronavirus disease (COVID-19) pandemic (2022), https://www.who.int/news/item/19-01-2022-statement-on-the-tenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic

  3. Hundreds of AI tools have been built to catch Covid. None of them helped. (2022), https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/

  4. Ardakani, A.A., Kanafi, A.R., Acharya, U.R., Khadem, N., Mohammadi, A.: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks. Comput. Biol. Med. 121, 103795 (2020). https://doi.org/10.1016/j.compbiomed.2020.103795, https://www.sciencedirect.com/science/article/pii/S0010482520301645

  5. Chakraborty, S., Mali, K.: SuFMoFPA: A superpixel and meta-heuristic based fuzzy image segmentation approach to explicate COVID-19 radiological images. Expert Syst. Appl. 167, 114142 (2021). https://doi.org/10.1016/j.eswa.2020.114142, https://www.sciencedirect.com/science/article/pii/S0957417420308897

  6. Chen, J., et al.: Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci. Rep. 10(1), 19196 (2020). https://doi.org/10.1038/s41598-020-76282-0, https://www.nature.com/articles/s41598-020-76282-0, number: 1 Publisher: Nature Publishing Group

  7. Cifci, M.: Deep learning model for diagnosis of corona virus disease from CT images. Int.J. Sci. Res. Manag. 11, 273 (2020). Apr

    Google Scholar 

  8. Cozzi, D., et al.: Ground-glass opacity (GGO): a review of the differential diagnosis in the era of COVID-19. Jpn. J. Radiol. 39(8), 721–732 (2021). https://doi.org/10.1007/s11604-021-01120-w, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071755/

  9. DenOtter, T.D., Schubert, J.: Hounsfield Unit. StatPearls Publishing, Treasure Island (FL) (2021). http://europepmc.org/books/NBK547721

  10. Fan, D.P., et al.: Inf-Net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans. Med. Imag. 39(8), 2626–2637 (2020). https://doi.org/10.1109/TMI.2020.2996645, conference Name: IEEE Transactions on Medical Imaging. Aug

  11. Islam, M.Z., Islam, M.M., Asraf, A.: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Inform. Med. Unlock. 20, 100412 (2020). https://doi.org/10.1016/j.imu.2020.100412, https://www.sciencedirect.com/science/article/pii/S2352914820305621

  12. Jun, M., et al.: COVID-19 CT lung and infection segmentation dataset, April 2020. https://doi.org/10.5281/zenodo.3757476, https://zenodo.org/record/3757476, type: dataset

  13. Katsamenis, I., Protopapadakis, E., Voulodimos, A., Doulamis, A., Doulamis, N.: Transfer learning for COVID-19 pneumonia detection and classification in chest X-ray images. Tech. rep., medRxiv, December 2020. https://doi.org/10.1101/2020.12.14.20248158, https://www.medrxiv.org/content/10.1101/2020.12.14.20248158v1, type: article

  14. Kazerooni, E.A., Gross, B.H.: The Core Curriculum, p. 379. (September Core Curriculum Series). Lippincott Williams and Wilkins, Philadelphia (2003)

    Google Scholar 

  15. Le, N.Q.K.: Fertility-GRU: identifying fertility-related proteins by incorporating deep-gated recurrent units and original position-specific scoring matrix profiles. J. Proteome Res. 18(9), 3503–3511 (2019). https://doi.org/10.1021/acs.jproteome.9b00411, https://doi.org/10.1021/acs.jproteome.9b00411, publisher: American Chemical Society

  16. Li, L., et al.: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology 296(2), E65–E71 (2020). https://doi.org/10.1148/radiol.2020200905, https://pubs.rsna.org/doi/10.1148/radiol.2020200905, publisher: Radiological Society of North America

  17. Li, Y., Xia, L.: Coronavirus Disease 2019 (COVID-19): role of chest CT in diagnosis and management. Am. J. Roentgenol. 214(6), 1280–1286 (2020). https://doi.org/10.2214/AJR.20.22954, https://www.ajronline.org/doi/10.2214/AJR.20.22954, publisher: American Roentgen Ray Society

  18. Maganaris, C., Protopapadakis, E., Bakalos, N., Doulamis, N., Kalogeras, D., Angeli, A.: Evaluating transferability for Covid 3D localization using CT SARS-COV-2 segmentation models. In: Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2022, pp. 615–621., Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3529190.3534736, https://doi.org/10.1145/3529190.3534736

  19. COVID-19 (2022). http://medicalsegmentation.com/covid19/

  20. Morozov, S., et al.: Mosmeddata: Chest CT scans with Covid-19 related findings dataset. medRxiv (2020). https://doi.org/10.1101/2020.05.20.20100362, https://www.medrxiv.org/content/early/2020/05/22/2020.05.20.20100362

  21. Singh, D., Kumar, V., Vaishali, Kaur, M.: Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks. Eur. J. Clin. Microbiol. Infect. Dis. 39(7), 1379–1389 (2020). https://doi.org/10.1007/s10096-020-03901-z, https://doi.org/10.1007/s10096-020-03901-z

  22. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, e7068349 (2018). https://doi.org/10.1155/2018/7068349, https://www.hindawi.com/journals/cin/2018/7068349/, publisher: Hindawi

  23. ParaView (2022). https://www.paraview.org/

Download references

Acknowledgements

This research has been co-financed by European Union’s Horizon 2020 research and innovation programme under grant agreement No. 883441 for the STAMINA Innovation action.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Bakalos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maganaris, C., Protopapadakis, E., Bakalos, N., Doulamis, N., Kalogeras, D., Angeli, A. (2022). Transferability Limitations for Covid 3D Localization Using SARS-CoV-2 Segmentation Models in 4D CT Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20716-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20715-0

  • Online ISBN: 978-3-031-20716-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics