Skip to main content

Deep Architecture Based Spalling Severity Detection System Using Encoder-Decoder Networks

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13599))

Included in the following conference series:

  • 699 Accesses

Abstract

Proper maintenance of concrete structures is a significant issue to avoid any hazardous situation in civil infrastructure. Spalling is a significant surface concrete distress in bridges and buildings. Correctly detecting the severity level of spalling can make it happen to detect and maintain the harmful spalling promptly to avoid any accidents [10]. While previous works have been on surface defects, like cracks and spallings, few have addressed spalling severity detection. In this paper, we have proposed a deep learning-based approach to detect the exact location of spalling according to severity level by using pixel-by-pixel classification. Our network labels each pixel as no-spalling, small, or large spalling. To get the optimal proposed deep architecture, we tested several encoder-decoder networks to compare and analyze the performance of the detection processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelkader, E.M., Moselhi, O., Marzouk, M., Zayed, T.: Evaluation of spalling in bridges using machine vision method. In: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, vol. 37, pp. 1136–1143. IAARC Publications (2020)

    Google Scholar 

  2. Badrinarayanan, V., Handa, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293 (2015)

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Bai, M., Sezen, H.: Detecting cracks and spalling automatically in extreme events by end-to-end deep learning frameworks. In: ISPRS Annals of Photogrammetry and Remote Sensing Spatial Information Science, XXIV ISPRS Congress, International Society for Photogrammetry and Remote Sensing (2021)

    Google Scholar 

  5. Billah, U.H., La, H.M., Tavakkoli, A.: Deep learning-based feature silencing for accurate concrete crack detection. Sensors 20(16), 4403 (2020)

    Article  Google Scholar 

  6. Billah, U.H., Tavakkoli, A., La, H.M.: Concrete crack pixel classification using an encoder decoder based deep learning architecture. In: Bebis, G., et al. (eds.) ISVC 2019. LNCS, vol. 11844, pp. 593–604. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33720-9_46

    Chapter  Google Scholar 

  7. Dawood, T., Zhu, Z., Zayed, T.: Detection and quantification of spalling distress in subway networks. In: Chau, K.W., Chan, I.Y.S., Lu, W., Webster, C. (eds.) Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate, pp. 607–615. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6190-5_55

    Chapter  Google Scholar 

  8. Dawood, T., Zhu, Z., Zayed, T.: Machine vision-based model for spalling detection and quantification in subway networks. Autom. Constr. 81, 149–160 (2017)

    Article  Google Scholar 

  9. Ghosh Mondal, T., Jahanshahi, M.R., Wu, R.T., Wu, Z.Y.: Deep learning-based multi-class damage detection for autonomous post-disaster reconnaissance. Struct. Control. Health Monit. 27(4), e2507 (2020)

    Article  Google Scholar 

  10. Hoang, N.D., Huynh, T.C., Tran, V.D.: Concrete spalling severity classification using image texture analysis and a novel jellyfish search optimized machine learning approach. Adv. Civil Eng. 2021 (2021)

    Google Scholar 

  11. Hoang, N.D., Nguyen, Q.L., Tran, X.L.: Automatic detection of concrete spalling using piecewise linear stochastic gradient descent logistic regression and image texture analysis. Complexity 2019 (2019)

    Google Scholar 

  12. Hu, Z., Zhu, H., Hu, M., Ma, Y.: Rail surface spalling detection based on visual saliency. IEEJ Trans. Electr. Electron. Eng. 13(3), 505–509 (2018)

    Article  Google Scholar 

  13. Joshi, D., Singh, T.P., Sharma, G.: Automatic surface crack detection using segmentation-based deep-learning approach. Eng. Fract. Mech. 268, 108467 (2022)

    Article  Google Scholar 

  14. Khagi, B., Kwon, G.R.: Pixel-label-based segmentation of cross-sectional brain MRI using simplified SegNet architecture-based CNN. J. Healthc. Eng. 2018, 1–8 (2018)

    Google Scholar 

  15. Kim, M.K., Sohn, H., Chang, C.C.: Localization and quantification of concrete spalling defects using terrestrial laser scanning. J. Comput. Civ. Eng. 29(6), 04014086 (2015)

    Article  Google Scholar 

  16. Li, J., Li, W., Jin, C., Yang, L., He, H.: One view per city for buildings segmentation in remote-sensing images via fully convolutional networks: a proof-of-concept study. Sensors 20(1), 141 (2019)

    Article  Google Scholar 

  17. Mohammed Abdelkader, E., Moselhi, O., Marzouk, M., Zayed, T.: Entropy-based automated method for detection and assessment of spalling severities in reinforced concrete bridges. J. Perform. Constr. Facil. 35(1), 04020132 (2021)

    Article  Google Scholar 

  18. Mohd Ali, A., Sanjayan, J., Guerrieri, M.: Specimens size, aggregate size, and aggregate type effect on spalling of concrete in fire. Fire Mater. 42(1), 59–68 (2018)

    Article  Google Scholar 

  19. Nguyen, H., Hoang, N.D.: Computer vision-based classification of concrete spall severity using metaheuristic-optimized extreme gradient boosting machine and deep convolutional neural network. Autom. Constr. 140, 104371 (2022)

    Article  Google Scholar 

  20. Pham, D., Ha, M., Xiao, C.: A novel visual inspection system for rail surface spalling detection. In: IOP Conference Series: Materials Science and Engineering, vol. 1048, p. 012015. IOP Publishing (2021)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Tanaka, H., Tottori, S., Nihei, T.: Detection of concrete spalling using active infrared thermography. Q. Rep. RTRI 47(3), 138–144 (2006)

    Article  Google Scholar 

  23. Wu, H., Ao, X., Chen, Z., Liu, C., Xu, Z., Yu, P.: Concrete spalling detection for metro tunnel from point cloud based on roughness descriptor. J. Sensors 2019 (2019)

    Google Scholar 

  24. Yang, L., Li, B., Li, W., Liu, Z., Yang, G., Xiao, J.: Deep concrete inspection using unmanned aerial vehicle towards CSSC database. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 24–28 (2017)

    Google Scholar 

  25. Zhang, H., Zou, Y., del Rey Castillo, E., Yang, X.: Detection of RC spalling damage and quantification of its key properties from 3D point cloud. KSCE J. Civ. Eng. 26(5), 2023–2035 (2022)

    Article  Google Scholar 

  26. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  27. Zhou, M., Cheng, W., Huang, H., Chen, J.: A novel approach to automated 3d spalling defects inspection in railway tunnel linings using laser intensity and depth information. Sensors 21(17), 5725 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the U.S. National Science Foundation (NSF) under grants NSF-CAREER: 1846513 and NSF-PFI-TT: 1919127, and the U.S. Department of Transportation, Office of the Assistant Secretary for Research and Technology (USDOT/OST-R) under Grant No. 69A3551747126 through INSPIRE University Transportation Center, the Vingroup Innovation Foundation (VINIF) in project code VINIF.2020.NCUD.DA094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Manh La .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yasmin, T., Le, C., La, H.M. (2022). Deep Architecture Based Spalling Severity Detection System Using Encoder-Decoder Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20716-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20715-0

  • Online ISBN: 978-3-031-20716-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics