Abstract
Object segmentation is a fundamental problem for both biological and machine vision systems. Recent advances in deep learning have allowed significant progress in terms of the ability of machine vision systems to carry out object segmentation, but this work has ignored a key piece of information that the biological vision system uses for segmentation: border ownership, or the determination for a given edge of which side the object is that owns it. Here we present a method for determining border ownership using a deep neural network model. Additionally, the model learns selectivity for object categories, suggesting a potential relationship between border ownership information and object category-selectivity. Our model may serve as a basic building block for machine vision systems that aim to reproduce the robustness of biological vision systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic Segmentation. arXiv:1801.00868v3 [cs.CV] (10 Apr. 2019). https://www.cityscapes-dataset.com/
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6). https://doi.org/10.1145/3065386
Dedieu, A., Rikhye, RV., Gredilla, M.L., George, D.: Learning attention-controllable border-ownership for objectness inference and binding. bioRxiv, https://doi.org/10.1101/2020.12.31.424926
Buades, A., Grompone von Gioi, R., Navarro, J.: Joint Contours, Corner and T-Junction Detection: An Approach Inspired by the Mammal Visual System. Journal of Mathematical Imaging and Vision 60(3), 341–354 (2017). https://doi.org/10.1007/s10851-017-0763-z
Vaswani, A., et al.: Attention is All You Need. arXiv:1706.03762v5 [cs.CL] (6 Dec. 2017)
Lee, C-H., Liu, Z., Wu, L., Luo, P.: MaskGAN: Towards Diverse and Interactive Facial Image Manipulation. arXiv:1907.11922 [cs.CV] (1 Apr. 2020). https://github.com/switchablenorms/CelebAMask-HQ
Szegedy, C., et al.: Going deeper with convolutions. arXiv:1409.4842v1 [cs.CV]
George, D., et al.: A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science (2017). https://doi.org/10.1126/science.aag2612
llg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. arXiv:1612.01925 [cs.CV] (6 Dec. 2016). https://github.com/NVIDIA/flownet2-pytorch
Craft, E., Schütze, H., Niebur, E., von der Heydt, R.: A neural model of figure-ground organization. J Neurophysiol 97, 4310–4326 (2007). https://doi.org/10.1152/jn.00203.2007
Qiu, F.T., Sugihara, T., von der Heydt, R.: Figure-ground mechanisms provide structure for selective attention. Nat Neurosci. 10(11), 1492-1499 (November 2007). https://doi.org/10.1038/nn1989
Girard, P., Hupe, J.M., Bullier, J.: Feedforward and Feedback Connections Between Areas V1 and V2 of the Monkey Have Similar Rapid Conduction Velocities. J. Neurophysiol 85, 1328–1331
Ko, H.-K., von der Heydt, R.: Figure-ground organization in the visual cortex: does meaning matter? Articles in Press. J Neurophysiology (4 Oct 2017). https://doi.org/10.1152/jn.00131.2017
Jehee, J.F.M., Lamme, V.A.F., Roelfsema, P.R.: Boundary assignment in a recurrent network architecture. Vision Research 47(9), 1153–1165. https://doi.org/10.1016/j.visres.2006.12.018
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask RCNN. arXiv:1703.06870v3 [cs.CV] (24 Jan 2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. arXiv:1512.03385v1 [cs.CV] (10 Dec. 2015)
Wrenninge, M., Unger, J.: Synscapes: A Photorealistic Synthetic Dataset for Street Scene Parsing. arXiv:1810.08705 [cs.CV] (19 Oct. 2018). https://7dlabs.com/Synscapes-overview
Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-granted annotated datasets for image-based plant phenotyping. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2015.10.013; https://www.plant-phenotyping.org/datasets-home
Aubry, M., Maturana, D., Efros, A.A., Russell, B.C., Sivic, J.: Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models. FlyingChair dataset: https://lmb.informatik.uni-freiburg.de/resources/datasets/GenerateChairs.en.html
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sundberg, P., Brox, T., Maire, M., Arbelaez, P., Malik, J.: Occlusion boundary detection and figure/ground assignment from optic flow. CVPR 2011, 2233–2240 (2011). https://doi.org/10.1109/CVPR.2011.5995364
Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to Refine Object Segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5
Bao, P., Tsao, D.Y.: Representation of multiple objects in macaque category-selective areas. Nature Communications 9, 1774 (2018). https://doi.org/10.1038/s41467-018-04126-7
Bao, P., She, L., McGill, M., Tsao, D.Y.: A map of object space in primate inferotemporal cortex. Nature Article, published 17 June 2020. https://doi.org/10.1038/s41586-020-2350-5
von der Heydt, R.: Figure-ground organization and the emergence of proto-objects in the visual cortex. Front. Phychol. 6, 1695. https://doi.org/10.3389/fpsyg.2015.01695
von der Heydt, R., Zhang, N.R.: Figure and ground: how the visual cortex integrates local cues for global organization. J Neurophysiol 120, 3085–3098 (2018). published 25 July 2018. https://doi.org/10.1152/jn00125.2018
Zhu, S.D., Zhang, L.A., von der Heydt, R.: Searching for object pointers in the visual cortex. JNP Journal of Neurophysiology (11 May 2020). https://doi.org/10.1152/jn.00112.2020
Wu, Z., et al.: 3D ShapeNets: A Deep Representation for Volumetric Shapes. arXiv:1406.5670v3 [cs.CV] (15 Apr. 2015). https://modelnet.cs.princeton.edu/
Chen, T., Cheng, X., Tsao, T.: Supplementary Materials for: Border-ownership, Category-selectivity, and Beyond. http://opticarraytech.com/Supplementary-Border-Ownership-Category-Selectivity-and-Beyond.v4.2.pdf
Acknowledgment
We thank Albert Tsao very much for his careful review and editorial suggestions that greatly improved the manuscript. The inventions described here are protected by US patent 11,282,293.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, T., Cheng, X., Tsao, T. (2022). Border Ownership, Category Selectivity and Beyond. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-20716-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20715-0
Online ISBN: 978-3-031-20716-7
eBook Packages: Computer ScienceComputer Science (R0)