Abstract
Infrared (IR) spectroscopic imaging offers label-free visualization of sample heterogeneity via spatially localized chemical information. This spatial-spectral data set is amenable to computational algorithms that highlight functional properties of the sample. Although Fourier transform IR (FT-IR) imaging provides reliable analytical information over a wide spectral profile, long data acquisition times are a major challenge impeding broad adoptability. Discrete frequency (DF) IR imaging is considerably faster, first by reducing the total number of spectral frequencies acquired to only those necessary for the task, and second by using substantially higher optical power via IR lasers. Further acceleration of imaging is hindered by high laser noise and usually relies on time-consuming averaging of ensemble measurements to achieve useful signal-to-noise ratio (SNR). Here, we develop a novel convolutional neural network (CNN) architecture capable of denoising discrete frequency infrared (DFIR) images in real-time, removing the need for excessive co-averaging, thereby reducing the total data acquisition time accordingly. Our architecture is based on dilated residual block network (DRB-Net), which outperforms state-of-the-art CNN models for image denoising task. To validate the robustness of DRB-Net, we demonstrate its efficacy on various unseen samples including SU-8 targets, polymers, cells, and prostate tissues. Our findings demonstrate that DRB-Net recovers high-quality data from noisy input without supervision and with minimal computation time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Krafft, C., Steiner, G., Beleites, C., Salzer, R.: Disease recognition by infrared and Raman spectroscopy. J. Biophoton. 2, 13–28 (2009). https://doi.org/10.1002/jbio.200810024
Tiwari, S., Falahkheirkhah, K., Cheng, G., Bhargava, R.: Colon cancer grading using infrared spectroscopic imaging-based deep learning. Appl. Spectrosc. (2022). https://doi.org/10.1177/00037028221076170
Nallala, J., et al.: Infrared imaging as a cancer diagnostic tool: introducing a new concept of spectral barcodes for identifying molecular changes in colon tumors. Cytometry A 83, 294–300 (2013). https://doi.org/10.1002/cyto.a.22249
Wood, B.R., Chiriboga, L., Yee, H., Quinn, M.A., McNaughton, D., Diem, M.: Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. Gynecol. Oncol. 93, 59–68 (2004)
Zimmermann, E., et al.: Detection and quantification of myocardial fibrosis using stain-free infrared spectroscopic imaging. Arch. Pathol. Lab. Med. (2021). https://doi.org/10.5858/arpa.2020-0635-OA
Schnell, M., et al.: All-digital histopathology by infrared-optical hybrid microscopy. Proc. Natl. Acad. Sci. U.S.A. 117, 201912400 (2020). https://doi.org/10.1073/pnas.1912400117
Chen, G., Qian, S.E.: Denoising and dimensionality reduction of hyperspectral imagery using wavelet packets, neighbour shrinking and principal component analysis. Remote Sens. Lett. 30, 4889–4895 (2009). https://doi.org/10.1080/01431160802653724
Berisha, S., et al.: SIproc: an open-source biomedical data processing platform for large hyperspectral images. Analyst 142, 1350–1357 (2017). https://doi.org/10.1039/C6AN02082H
Zimmermann, B., Kohler, A.: Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl. Spectrosc. 67, 892–902 (2013). https://doi.org/10.1366/12-06723
Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: Proc. 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, pp. 2808–2817 (2017). https://doi.org/10.48550/arxiv.1704.03264
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proc. 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognition, CVPR 2005. II, pp. 60–65 (2005). https://doi.org/10.1109/CVPR.2005.38
Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 27, 4608–4622 (2017). https://doi.org/10.1109/TIP.2018.2839891
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238
Rabie, T.: Robust estimation approach for blind denoising. IEEE Trans. Image Process. 14, 1755–1765 (2005). https://doi.org/10.1109/TIP.2005.857276
Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30, 299–314 (2008). https://doi.org/10.1109/TPAMI.2007.1176
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2016). https://doi.org/10.1109/TIP.2017.2662206
Santhanam, V., Morariu, V.I., Davis, L.S.: Generalized deep image to image regression. In: Proc. 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, pp. 5395–5405 (2017). https://doi.org/10.1109/CVPR.2017.573
Mao, X.J., Shen, C., Yang, B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. Adv. Neural Inf. Process. Syst. 2810–2818 (2016). https://doi.org/10.48550/arxiv.1603.09056
Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for image restoration. In: 7th Int. Conf. Learn. Represent. ICLR 2019 (2019). https://doi.org/10.48550/arxiv.1903.10082
Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 3155–3164 (2018). https://doi.org/10.1109/CVPR.2018.00333
Pradhan, P., Guo, S., Ryabchykov, O., Popp, J., Bocklitz, T.W.: Deep learning a boon for biophotonics? J. Biophoton. 13, e201960186 (2020). https://doi.org/10.1002/JBIO.201960186
Berisha, S., et al.: Deep learning for FTIR histology: leveraging spatial and spectral features with convolutional neural networks. Analyst 144, 1642–1653 (2019)
Bhargava, R.: Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology. Anal. Bioanal. Chem. 389, 1155–1169 (2007). https://doi.org/10.1007/s00216-007-1511-9
Reddy, R.K., Bhargava, R.: Accurate histopathology from low signal-to-noise ratio spectroscopic imaging data. Analyst 135, 2818–2825 (2010)
Koziol, P., et al.: Denoising influence on discrete frequency classification results for quantum cascade laser based infrared microscopy. Anal. Chim. Acta 1051, 24–31 (2019). https://doi.org/10.1016/J.ACA.2018.11.032
Falahkheirkhah, K., Yeh, K., Mittal, S., Pfister, L., Bhargava, R.: Deep learning-based protocols to enhance infrared imaging systems. Chemom. Intell. Lab. Syst. 217, 104390 (2021). https://doi.org/10.1016/J.CHEMOLAB.2021.104390
Bhargava, R., Wang, S.Q., Koenig, J.L.: Route to higher fidelity FT-IR imaging. Appl. Spectrosc. 54, 486–495 (2000). https://doi.org/10.1366/0003702001949898
Bhargava, R., Wang, S.-Q., Koenig, J.L.: Processing FT-IR imaging data for morphology visualization. Appl. Spectrosc. 54, 1690–1706 (2000)
Koziol, P., et al.: Comparison of spectral and spatial denoising techniques in the context of high definition FT-IR imaging hyperspectral data. Sci. Rep. 8, 1–11 (2018). https://doi.org/10.1038/s41598-018-32713-7
Wang, T., Sun, M., Hu, K.: Dilated deep residual network for image denoising. In: Proc. Int. Conf. Tools with Artif. Intell. ICTAI, pp. 1272–1279 (2017). https://doi.org/10.48550/arxiv.1708.05473
Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 4905–4913 (2017). https://doi.org/10.48550/arxiv.1701.04128
Li, X., Li, F., Fern, X., Raich, R.: Filter shaping for convolutional neural networks. In: Int. Conf. Learn. Represent. (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work, pp. 1132–1140 (2017). https://doi.org/10.48550/arxiv.1707.02921
Mittal, S., Yeh, K., Suzanne Leslie, L., Kenkel, S., Kajdacsy-Balla, A., Bhargava, R.: Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology. Proc. Natl. Acad. Sci. U.S.A. 115, 651–660 (2018). https://doi.org/10.1073/pnas.1719551115
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (ICLR) (2015)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proc. Thirteen. Int. Conf. Artif. Intell. Stat., pp. 249–256 (2010)
Krull, A., Buchholz, T.O., Jug, F.: Noise2Void – learning denoising from single noisy images. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2124–2132 (2018). https://doi.org/10.48550/arxiv.1811.10980
Huang, T., Li, S., Jia, X., Lu, H., Liu, J.: Neighbor2Neighbor: self-supervised denoising from single noisy images. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 14776–14785 (2021). https://doi.org/10.48550/arxiv.2101.02824
Moran, N., Schmidt, D., Zhong, Y., Coady, P.: Noisier2Noise: learning to denoise from unpaired noisy data. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 12061–12069 (2019). https://doi.org/10.1109/CVPR42600.2020.01208
Pang, T., Zheng, H., Quan, Y., Ji, H.: Recorrupted-to-recorrupted: unsupervised deep learning for image denoising. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2043–2052 (2021). https://doi.org/10.1109/CVPR46437.2021.00208
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Falahkheirkhah, K., Yeh, K., Confer, M.P., Bhargava, R. (2022). DRB-Net: Dilated Residual Block Network for Infrared Image Restoration. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-20716-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20715-0
Online ISBN: 978-3-031-20716-7
eBook Packages: Computer ScienceComputer Science (R0)