Skip to main content

Bounds for the Oriented Diameter of Planar Triangulations

  • Conference paper
  • First Online:
Frontiers of Algorithmic Wisdom (IJTCS-FAW 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13461))

Included in the following conference series:

Abstract

The diameter of an undirected or a directed graph is defined to be the maximum shortest path distance over all pairs of vertices in the graph. Given an undirected graph G, we examine the problem of assigning directions to each edge of G such that the diameter of the resulting oriented graph is minimized. The minimum diameter over all strongly connected orientations is called the oriented diameter of G. The problem of determining the oriented diameter of a graph is known to be NP-hard, but the time-complexity question is open for planar graphs. In this paper we compute the exact value of the oriented diameter for triangular grid graphs. We then prove an n/3 lower bound and an \(n/2+O(\sqrt{n})\) upper bound on the oriented diameter of planar triangulations. It is known that given a planar graph G with bounded treewidth and a fixed positive integer k, one can determine in linear time whether the oriented diameter of G is at most k. In contrast, we consider a weighted version of the oriented diameter problem and show it to be weakly NP-complete for planar graphs with bounded pathwidth.

The work of D. Mondal is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajish Kumar, K.S., Rajendraprasad, D., Sudeep, K.S.: Oriented Diameter of Star Graphs. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 307–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2_25

  2. Bonichon, N., Le Saëc, B., Mosbah, M.: Optimal area algorithm for planar polyline drawings. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 35–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36379-3_4

  3. Chvátal, V., Thomassen, C.: Distances in orientations of graphs. J. Combin. Theory, Ser. B 24(1), 61–75 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dankelmann, P., Guo, Y., Surmacs, M.: Oriented diameter of graphs with given maximum degree. J. Graph Theory 88, 5–17 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Djidjev, H.N., Venkatesan, S.M.: Reduced constants for simple cycle graph separation. Acta Inform. 34(3), 231–243 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eggemann, N., Noble, S.D.: Minimizing the oriented diameter of a planar graph. Electron. Notes Discrete Math. 34, 267–271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fomin, F.V., Matamala, M., Prisner, E., Rapaport, I.: Bilateral orientations and domination. Electron. Notes Discrete Math. 7 (2001)

    Google Scholar 

  8. Fomin, F.V., Matamala, M., Rapaport, I.: The complexity of approximating the oriented diameter of chordal graphs. Int. Workshop Graph-Theoretic Concepts Comput. Sci. 2573, 211–222 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Fomin, F.V., Matamala, M., Rapaport, I.: AT-free graphs: linear bounds for the oriented diameter. Discret. Appl. Math. 141, 135–148 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual networks. Discret. Appl. Math. 53(1–3), 79–133 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujita, S.: On oriented diameter of star graphs. In: First International Symposium on Computing and Networking, pp. 48–56 (2013)

    Google Scholar 

  12. Gazit, H., Miller, G.L.: Planar separators and the Euclidean norm. In: Asano, T., Ibaraki, T., Imai, H., Nishizeki, T. (eds.) SIGAL 1990. LNCS, vol. 450, pp. 338–347. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52921-7_83

  13. Gutin, G., Yeo, A.: Orientations of digraphs almost preserving diameter. Discret. Appl. Math. 121, 129–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guttmann-Beck, N., Hassin, R.: Minimum diameter and cycle-diameter orientations on planar graphs. arXiv e-prints pp. arXiv-1105 (2011)

    Google Scholar 

  15. Guttmann-Beck, N., Hassin, R.: Series-parallel orientations preserving the cycle-radius. Inf. Process. Lett. 112(4), 153–160 (2012). https://doi.org/10.1016/j.ipl.2011.10.020

  16. Koh, K.M., Tan, B.P., Rapaport, I.: The diameter of an orientation of a complete multipartite graph. Discret. Math. 149(1–3), 131–139 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koh, K.M., Tay, E.G.: On optimal orientations of cartesian products of graphs (ii): complete graphs and even cycles. Discret. Math. 211, 75–102 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koh, K.M., Tay, E.G.: Optimal orientations of graphs and digraphs: a survey. Graphs Comb. 18(4), 745–756 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. König, J., Krumme, D.W., Lazard, E.: Diameter-preserving orientations of the torus. Networks 32(1), 1–11 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krumme, D.W.: Fast gossiping for the hypercube. SIAM J. Comput. 21(2), 365–380 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kurz1y, S., Latsch, M.: Bounds for the minimum oriented diameter. Discret. Math. Theoret. Computer Sci. 14(1), 109–142 (2012)

    Google Scholar 

  22. Kwok, P.K., Liu, Q., West, D.B.: Oriented diameter of graphs with diameter 3. J. Combinat. Theory 100(3), 265–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. McCanna, J.E.: Orientations of the n-cube with minimum diameter. Discret. Math. 68(2–3), 309–313 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32(3), 265–279 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mondal, D., Parthiban, N., Rajasingh, I.: Oriented diameter of planar triangulations. CoRR abs/2203.04253 (2022). https://doi.org/10.48550/arXiv.2203.04253

  26. Ng, K.L., Koh, K.M.: On optimal orientation of cycle vertex multiplications. Discret. Math. 297(1–3), 104–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city street graphs I: large grids. SIAM J. Discret. Math. 1(2), 199–222 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city street graphs. III. three east-west avenues or north-south streets. Networks 22(2), 109–143 (1992)

    Google Scholar 

  29. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 138–148. ACM, San Francisco, California, USA (1990)

    Google Scholar 

  30. Wang, X., Chen, Y., Dankelmann, P., Guo, Y., Surmacs, M., Volkmann, L.: Oriented diameter of maximal outerplanar graphs. J. Graph Theory 98(3), 426–444 (2021)

    Article  MathSciNet  Google Scholar 

  31. West, D.B.: Introduction to Graph Theory. Prentice-Hall (2000)

    Google Scholar 

  32. Zhang, H., He, X.: Canonical ordering trees and their applications in graph drawing. Discret. Comput. Geometry 33(2), 321–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Parthiban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mondal, D., Parthiban, N., Rajasingh, I. (2022). Bounds for the Oriented Diameter of Planar Triangulations. In: Li, M., Sun, X. (eds) Frontiers of Algorithmic Wisdom. IJTCS-FAW 2022. Lecture Notes in Computer Science, vol 13461. Springer, Cham. https://doi.org/10.1007/978-3-031-20796-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20796-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20795-2

  • Online ISBN: 978-3-031-20796-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics