Abstract
A brief review of molecular modeling methods and specialized software and their use for creating and researching molecular models was considered. The authors considered the algebraic approach to modeling molecular interactions in some environments to determine the triggering of the studied properties. In particular, the article describes the results of the first steps of building a tool for the study of molecular, and in particular, biomolecular interaction, based on the formalism of behavioral algebra and insertion modeling. The experiment’s results of applying the proposed approach to modeling atoms interaction (creating of atomic bonds - valence method), constructing the electronic configuration of the molecule/substance (molecular orbitals method), and calculating their main parameters are given. The formalization and properties analysis is considered using the insertion modeling platform.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gettys, N.S.: Challenges for chemistry in the 21st century: report on the American chemical society presidential event. J. Chem. Educ. 75(6), 665 (1998). https://doi.org/10.1021/ed075p665
Manley, J.B., Anastas, P.T., Cue Jr, B.W.: Frontiers in green chemistry: meeting the grand challenges for sustainability in R&D and manufacturing. J. Cleaner Prod. 16(6), 743–750 (2008)
James, T.D.: Specialty grand challenges in supramolecular chemistry. Front. Chem. 5, 83 (2017)
Li, J., Peng, Z., Wang, E.: Tackling grand challenges of the 21st century with electroanalytical chemistry. J. Am. Chem. Soc. 140(34), 10629–10638 (2018). https://doi.org/10.1021/jacs.8b01302
Peplow, M.: Chemistry’s grand challenges. https://www.chemistryworld.com/features/chemistrys-grand-challenges/6500.article. Accessed 21 Jan 2022
The website of the Dial-a-Molecule EPSRC Grand Challenge Network. http://generic.wordpress.soton.ac.uk/dial-a-molecule/. Accessed 21 Jan 2022
https://www.ccdc.cam.ac.uk/Community/initiatives/cspblindtests/. Accessed 21 Jan 2022
The Cambridge Crystallographic Data Centre (CCDC). https://www.ccdc.cam.ac.uk/. Accessed 21 Jan 2022
The Carbon Dioxide Utilisation Network. http://co2chem.co.uk/. Accessed 21 Jan 2022
The Human Epigenome Consortium. https://www.epigenome.org/index.php. Accessed 21 Jan 2022
Letichevsky, A., Letychevskyi, O., Peschanenko, V., Poltorackij, M.: An algebraic approach for analyzing of legal requirements. In: 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW), pp. 209–212, IEEE. (2017)
Letychevskyi, O., Peschanenko, V., Radchenko, V., Poltoratskiy, M., Tarasich, Y.: Formalization and algebraic modeling of tokenomics projects. In: Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, pp. 577–584 (2019)
Letychevsky, O., Peschanenko, V., Radchenko, V., Hryniuk, Y., Yakovlev, V..: Algebraic patterns of vulnerabilities in binary code. In: Conference Proceedings of 2019 10th International Conference on Dependable Systems, Services and Technologies, DESSERT 2019, 8770033, pp. 70–73 (2019)
Kolchin, A., Letichevsky, A., Peschanenko, V., Drobintsev, P., Kotlyarov, V.: An approach to creating concretized test scenarios within test automation technology for industrial software projects. Autom. Control. Comput. Sci. 47(7), 433–442 (2013). https://doi.org/10.3103/S0146411613070213
Letychevsky, O., Peschanenko, V., Radchenko, V., Orlovsky, M., Sobol A.: Algebraic approach to verification and testing of distributed application. PervasiveHealth: Pervasive Comput. Technol. Healthc. 37–43 (2019)
Letychevskyi, O., Peschanenko, V., Poltoratskyi, M., Tarasich, Y.: Platform for modeling of algebraic behavior: experience and conclusions. In: Proceedings of the 16th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, vol. 2732, pp. 42–57 (2020)
Letichevsky, A., Letychevskyi, O., Peschanenko, V., Weigert, T.: Insertion modeling and symbolic verification of large systems. In: Fischer, J., Scheidgen, M., Schieferdecker, I., Reed, R. (eds.) SDL 2015. LNCS, vol. 9369, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24912-4_1
Lengauer, T., Rarey, M.: Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 6(3), 402–406 (1996). https://doi.org/10.1016/S0959-440X(96)80061-3
Haile, J.M.: Molecular Dynamics Simulation. John Wiley, New York (1992)
Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press (2004). https://doi.org/10.1017/CBO9780511816581
Metropolis, N., Stanislaw, U.: The monte carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)
Rubinstein, R.Y., Kroese, D.P.: Simulation and the monte carlo method. John Wiley, Hoboken, New Jersey (2016)
Barbosa, N.S.V., de Almeida Lima, E.R., Tavares, F.W.: Molecular modeling in chemical engineering. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier (2017). https://doi.org/10.1016/B978-0-12-409547-2.13915-0
THE BioSPI PROJECT. http://www.wisdom.weizmann.ac.il/~biospi/index_main.html. Accessed 21 Jan 2022
Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. Bioconcur 2004, ENTCS (2004)
Sneha ,T., Georrge, J.J.: In silico protein engineering: methods and tools. In: Proceedings of 10th National Science Symposium on Recent Trends in Science and Technology. Gujarat, India: Christ Publications, Gujara, pp. 73–80 (2018)
Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinf. (Oxford, England) 20(17), 3289–3291 (2004). https://doi.org/10.1093/bioinformatics/bth378
Harris, L.A., et al.: BioNetGen 2.2: advances in rule-based modeling. Bioinformatics 32(21), 3366–3368 (2016). https://doi.org/10.1093/bioinformatics/btw469
Jones, B.: Clinical radiobiology of proton therapy: modeling of RBE. Acta oncologica (Stockholm, Sweden) 56(11), 1374–1378 (2017). https://doi.org/10.1080/0284186X.2017.1343496
Letichevsky, A., Letychevskyi, O., Peschanenko, V.: Insertion modeling and its applications. Comput. Sci. J. Moldova 24(3), 357–370 (2016)
APS & IMS. http//www.apsystem.org.ua. Accessed 21 Jan 2022
Letichevsky, A., Gilbert, D.: A model for interaction of agents and environments. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 311–328. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-44616-3_18
Baranov, S., Jervis, C., Kotlyarov, V., Letichevsky, A., Weigert T. Leveraging: UML to deliver correct telecom applications. In: Lavagno, L., Martin, G., Selic, B., (eds.) UML for Real: Design of Embedded Real-Time Systems. Kluwer Academic Publishers, Amsterdam, (2003)
Letichevsky, A., et al.: System specification with basic protocols. Cybern. Syst. Anal. 41, 479–493 (2005)
Letichevsky, A., Godlevsky, A., Letychevsky, A., Potiyenko, S., Peschanenko, V.: Properties of a predicate transformer of the VRS system. Cybern. Syst. Anal. 46(4), 521–532 (2010)
Letichevsky, A., Kapitonova, J., Letichevsky, A., Jr., Volkov, V., Baranov, S., Weigert, T.: Basic protocols, message sequence charts, and the verification of requirements specifications. Comput. Netw. 49(5), 661–675 (2005)
Omega: a solver for quantifier-free problems in Presburger Arithmetic. https://coq.inria.fr/refman/addendum/omega.html. Accessed 21 Jan 2022
CVC3. https://cs.nyu.edu/acsys/cvc3/. Accessed 21 Jan 2022
Z3Prover. https://github.com/Z3Prover/z3. Accessed 21 Jan 2022
Mathsat. http://mathsat.fbk.eu. Accessed 21 Jan 2022
Richard F.W.; Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press, Oxford, (1990)
Kumar, P.S.V., Raghavendra, V., Subramanian, V.: Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J. Chem. Sci. 128(10), 1527–1536 (2016). https://doi.org/10.1007/s12039-016-1172-3
Jiang, C., Jin, X, Dong, Y., Chen, M.: Kekule.js: an open source javascript chemoinformatics toolkit . J. Chem. Inf. Model. 56(6), 1132–1138 (2016) https://doi.org/10.1021/acs.jcim.6b00167
Private Enterprise LitSoft. http://litsoft.com.ua/ Accessed 21 Jan 2022
Acknowledgements
We would like to thank the company Private Enterprise LitSoft [44] for the opportunity to work with the platform for modeling, formal verification and testing of Blockchain / DLT systems behavior and cybersecurity research for our research and experiments in the modeling area. We are also grateful to the Glushkov Institute of Cybernetics of NAS of Ukraine for the theoretical and practical results in the field of verification that were used as a basis for our studies of formalization and algebraic modeling in the tokenomics projects area and to the Kherson State University for the active supporting of Insertion Modeling System.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Letychevskyi, O., Tarasich, Y., Peschanenko, V., Volkov, V., Sokolova, H., Poltoratskyi, M. (2022). Algebraic Modeling as One of the Methods for Solving Organic Chemistry Problems. In: Ermolayev, V., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2021. Communications in Computer and Information Science, vol 1698. Springer, Cham. https://doi.org/10.1007/978-3-031-20834-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-20834-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20833-1
Online ISBN: 978-3-031-20834-8
eBook Packages: Computer ScienceComputer Science (R0)