Skip to main content

Machine Learning Classifiers Based on Dimensionality Reduction Techniques for the Early Diagnosis of Alzheimer’s Disease Using Magnetic Resonance Imaging and Positron Emission Tomography Brain Data

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2021)

Abstract

Machine learning techniques have become more attractive and widely used for medical image processing purposes. In particular, the diagnosis of neurodegenerative diseases has recently shown a potential field of application for these methods. The performance comparison of a unique algorithm in various study contexts can be biased, which usually leads to incorrect results. In this context, this study consists in comparing the performance of different machine learning techniques, identifying their main trends and their application for the diagnosis of Alzheimer’s disease (AD). We presented a computer-aided diagnosis system for the early diagnosis of AD by analyzing brain data from the OASIS dataset. The principal component analysis (PCA) and the uniform manifold approximation and projection (UMAP) technique have been evaluated on the magnetic resonance imaging and positron emission tomography images as feature selection techniques. After that, the features are fed into nine machine learning models namely Support vector machine (SVM), Artificial neural networks, Decision trees, Random Forests, Discriminant analysis, Regression analysis, Naive Bayes, k-Nearest neighbors, and Ensemble learning. The performance of the proposed classifiers is investigated by the confusion matrix. In addition, area under the curve, Matthews correlation coefficient, accuracy, and F1-score metrics are calculated regarding this matrix. Our results indicate that the SVM-PCA/UMAP schemes provide a significant advantage over the other classifiers. Moreover, they are more efficient than the baseline model based on the voxels-as-features reference feature extraction approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OMS. https://www.who.int/fr/news-room/fact-sheets/detail/dementia. Accessed 16 Nov 2021

  2. Organization Alzheimer’s Disease International. https://www.alzint.org/u/World-Alzheimer-Report-2021.pdf. Accessed 16 Nov 2021

  3. Herrmann, N., Harimoto, T., Balshaw, R., Lanctôt, K.L.: Canadian outcomes study in dementia (COSID) investigators: risk factors for progression of Alzheimer disease in a Canadian population: the Canadian outcomes study in dementia (COSID). Canadian journal of psychiatry. Revue canadienne de psychiatrie 60(4), 189–199 (2015)

    Google Scholar 

  4. Salem, H., Soria, D., Lund, J.N., et al.: A systematic review of the applications of expert systems (ES) and machine learning (ML) in clinical urology. BMC Med. Inform. Decis. Mak. 21, 223 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lazli, L., Boukadoum, M., Aït-Mohamed, O.: A survey on computer-aided diagnosis of brain disorders through MRI based on machine learning and data mining methodologies with an emphasis on Alzheimer disease diagnosis and the contribution of the multimodal fusion. Appl. Sci. 10(5) (2020)

    Google Scholar 

  6. Biagetti, G., Crippa, P., Falaschetti, L., Luzzi, S., Santarelli, R., Turchetti, C.: Classification of Alzheimer’s disease from structural magnetic resonance imaging using particle-bernstein polynomials algorithm. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2019. SIST, vol. 143, pp. 49–62. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8303-8_5

    Chapter  Google Scholar 

  7. Karami, V., Nittari, G., Amenta, F.: Neuroimaging computer-aided diagnosis systems for Alzheimer’s disease. Int. J. Imaging Syst. Technol. 29(1), 83–94 (2019)

    Google Scholar 

  8. Lazli, L., Boukadoum, M., Aït-Mohamed, O.: Computer-aided diagnosis system for Alzheimer’s disease using fuzzy-possibilistic tissue segmentation and SVM classification. In: 2018 IEEE Life Sciences Conference (LSC), Montréal, Canada, pp. 33–36 (2018)

    Google Scholar 

  9. Alvarez Fernandez, I., Aguilar, M., González, et al.: Clinic-based validation of cerebrospinal fluid biomarkers with florbetapir PET for diagnosis of dementia. J. Alzheimer’s Dis. 61, 1 9 (2018)

    Google Scholar 

  10. Cheng, D., Liu, M.: CNNs based multi-modality classification for AD diagnosis. In: Proceedings of the 10th International Congress on Image and Signal Processing, Bio Medical Engineering and Informatics (CISP-BMEI), Shanghai, China, pp. 1–5 (2017)

    Google Scholar 

  11. Kavitha, C., Vinodhini, M., Srividhya, S.R., et al.: Early-stage Alzheimer’s disease prediction using machine learning models. Front. Public Health 10 (2022)

    Google Scholar 

  12. Suhaira, V.P., Sita, S., Joby, G.: Alzheimer’s disease: classification and detection using MRI dataset. Int. J. Innov. Technol. Explor. Eng. 10(5) (2021)

    Google Scholar 

  13. Williams, J.A., Weakley, A., Cook, D.J., et al.: Machine learning techniques for diagnostic differentiation of mild cognitive impairment and dementia. Assoc. Adv. Artif. Intell. (2013). https://www.researchgate.net/publication/286817504

  14. Amulya, E.R., Varma, S., Paul, V.: Classification of brain MR images using texture feature extraction. Int. J. Comput. Sci. Eng. 5(5), 1722–1729 (2017)

    Google Scholar 

  15. Gray, K.R.: Machine learning for image-based classification of Alzheimer’s disease. Ph.D. thesis, Imperial College London (2012)

    Google Scholar 

  16. Klöppel, S., Stonnington, C.M., Chu, C., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008)

    Article  PubMed  Google Scholar 

  17. Magnin, B., Mesrob, L., Kinkingnéhun, S., et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2), 73–83 (2009)

    Article  PubMed  Google Scholar 

  18. Vemuri, P., Gunter, J.L., Senjem, M.L., et al.: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39(3), 1186–1197 (2008)

    Article  PubMed  Google Scholar 

  19. Saratxaga, C.L., Moya, I., Picón, A., et al.: MRI Deep learning-based solution for Alzheimer’s disease prediction. J. Pers. Med. 11, 902 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Basheer, S., Bhatia, S., Sakri, S.B.: Computational modeling of dementia prediction using deep neural network: analysis on OASIS dataset. IEEE Access 9, 42449–42462 (2021)

    Article  Google Scholar 

  21. Lazli, L., Boukadoum, M., Ait-Mohamed, O.: Computer-aided diagnosis system of Alzheimer’s disease based on multimodal fusion: tissue quantification based on the hybrid fuzzy-genetic-possibilistic model and discriminative classification based on the SVDD model. Brain Sci. 9(10), 289 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marcus, D.S., Wang, T.H., Parker, J., et al.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cognit. Neurosci 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  23. Chicco, D., Giuseppe, J.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 6 (2020)

    Google Scholar 

  24. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Statistical parametric mapping tool. https://www.fil.ion.ucl.ac.uk/spm/software/spm

  26. N3 software. http://www.bic.mni.mcgill.ca/software/N3/. Accessed 17 Oct 2020

  27. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 374(2065) (2016)

    Google Scholar 

  28. Kwok, H., Lai Guan, N., Ginhoux, F., Newell, E.W.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37(1), 38 44 (2019)

    Google Scholar 

  29. Tharwat, A., Gaber, T., Abdelhameed, I., Aboul Ella H.: Linear discriminant analysis: a detailed tutorial. AI Commun. 30, 169–190 (2017)

    Google Scholar 

  30. Hosmer Jr., DW., Lemeshow, S., Sturdivant, RX.: Applied Logistic Regression. Wiley, New York (2013)

    Google Scholar 

  31. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, no. 22, pp. 41–46. IBM, New York (2001)

    Google Scholar 

  32. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory. 13(1), 21–27 (1967)

    Article  Google Scholar 

  33. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Article  Google Scholar 

  34. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  35. Ayerdi, B., Savio, A., Graña, M.: Meta-ensembles of classifiers for Alzheimer’s disease detection using independent ROI features. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds.) IWINAC 2013. LNCS, vol. 7931, pp. 122–130. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38622-0_13

    Chapter  Google Scholar 

Download references

Acknowledgments

The author would like to thank the FRQNT organization for its financial support offered to accomplish this project. Many thanks to the researchers and expert clinicians of the OASIS dataset, for developing the images used in the preparation of this work. Special thanks to the reviewers of this work.

Funding

This project (#2022-2023-B3X-314498) was funded by the Fonds de recherche du Québec-Nature et Technologies (FRQNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilia Lazli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazli, L. (2022). Machine Learning Classifiers Based on Dimensionality Reduction Techniques for the Early Diagnosis of Alzheimer’s Disease Using Magnetic Resonance Imaging and Positron Emission Tomography Brain Data. In: Chicco, D., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2021. Lecture Notes in Computer Science(), vol 13483. Springer, Cham. https://doi.org/10.1007/978-3-031-20837-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20837-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20836-2

  • Online ISBN: 978-3-031-20837-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics