Skip to main content

Improving Bacterial sRNA Identification By Combining Genomic Context and Sequence-Derived Features

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2021)

Abstract

Bacterial small non-coding RNAs (sRNAs) are ubiquitous regulatory RNAs involved in controlling several cellular processes by targeting multiple mRNAs. The large diversity of sRNAs in terms of their length, sequence, and function poses a challenge for computational sRNA prediction. There are several bacterial sRNA prediction tools. Most of them use sequence-derived features or rely on phylogenetic conservation. Recently, a new sRNA predictor (sRNARanking) showed that using genomic context features outperformed methods based on sequence-derived features. Here we comparatively assessed the effect of using sequence-derived features together with genomic context features for computational sRNA prediction and generated a new model sRNARanking v2 with increased predictive performance in terms of the area under the precision-recall curve (AUPRC). sRNARanking v2 is available at:

https://github.com/BioinformaticsLabAtMUN/sRNARanking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnedo, J., Romero-Zaliz, R., Zwir, I., Del Val, C.: A multiobjective method for robust identification of bacterial small non-coding RNAs. Bioinformatics 30(20), 2875–82 (2014). https://doi.org/10.1093/bioinformatics/btu398

  2. Backofen, R., Hess, W.R.: Computational prediction of sRNAs and their targets in bacteria. RNA Biol. 7(1), 33–42 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. Barman, R.K., Mukhopadhyay, A., Das, S.: An improved method for identification of small non-coding RNAs in bacteria using support vector machine. Sci. Rep. 7, 46070 (2017). https://doi.org/10.1038/srep46070

  4. Broach, W.H., Weiss, A., Shaw, L.N.: Transcriptomic analysis of staphylococcal sRNAs: insights into species-specific adaption and the evolution of pathogenesis. Microb. Genom. 2(7), e000065 (2016). https://doi.org/10.1099/mgen.0.000065

  5. Chevez-Guardado, R., Peña-Castillo, L.: Promotech: a general tool for bacterial promoter recognition. Genome. Biol. 22(1), 318 (11 2021). https://doi.org/10.1186/s13059-021-02514-9

  6. Eppenhof, E.J.J., Peña-Castillo, L.: Prioritizing bona fide bacterial small RNAs with machine learning classifiers. PeerJ 7, e6304 (2019). https://doi.org/10.7717/peerj.6304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gómez-Lozano, M., Marvig, R.L., Molina-Santiago, C., Tribelli, P.M., Ramos, J.L., Molin, S.: Diversity of small RNAs expressed in Pseudomonas species. Environ. Microbiol. Rep. 7(2), 227–36 (2015). https://doi.org/10.1111/1758-2229.12233. Apr

    Article  CAS  PubMed  Google Scholar 

  8. Grüll, M.P., Peña-Castillo, L., Mulligan, M.E., Lang, A.S.: Genome-wide identification and characterization of small RNAs in Rhodobacter capsulatus and identification of small RNAs affected by loss of the response regulator CtrA. RNA Biol. 1–12 (2017). https://doi.org/10.1080/15476286.2017.1306175

  9. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020) https://doi.org/10.1038/s41586-020-2649-2

  10. Hör, J., Gorski, S.A., Vogel, J.: Bacterial RNA biology on a genome scale. Mol. Cell 70(5), 785–799 (2018). https://doi.org/10.1016/j.molcel.2017.12.023

  11. Kingsford, C.L., Ayanbule, K., Salzberg, S.L.: Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome. Biol. 8(2), R22 (2007). https://doi.org/10.1186/gb-2007-8-2-r22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klein, R.J., Misulovin, Z., Eddy, S.R.: Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc. Natl. Acad. Sci. USA 99(11), 7542–7 (2002). https://doi.org/10.1073/pnas.112063799

  13. Kröger, C., et al.: The transcriptional landscape and small RNAs of Salmonella enterica serovar typhimurium. Proc. Natl. Acad. Sci. USA 109(20), E1277-86 (2012). https://doi.org/10.1073/pnas.1201061109

  14. Kumar, K., Chakraborty, A., Chakrabarti, S.: PresRAT: a server for identification of bacterial small-RNA sequences and their targets with probable binding region. RNA Biol. 18(8), 1152–1159 (2021). https://doi.org/10.1080/15476286.2020.1836455

  15. Le Rhun, A., Beer, Y.Y., Reimegård, J., Chylinski, K., Charpentier, E.: RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes. RNA Biol. 13(2), 177–95 (2016). https://doi.org/10.1080/15476286.2015.1110674

    Article  PubMed  Google Scholar 

  16. Lu, X., Goodrich-Blair, H., Tjaden, B.: Assessing computational tools for the discovery of small RNA genes in bacteria. RNA 17(9), 1635–47 (2011). https://doi.org/10.1261/rna.2689811. Sep

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McKinney, W.: Data structures for statistical computing in python. In: van der Walt, S., Millman, J. (eds.) Proceedings of the 9th Python in Science Conference, pp. 56–61 (2010). https://doi.org/10.25080/Majora-92bf1922-00a

  18. Miotto, P., et al.: Genome-wide discovery of small RNAs in Mycobacterium tuberculosis. PLoS One 7(12), e51950 (2012). https://doi.org/10.1371/journal.pone.0051950

  19. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  20. Quinlan, A.R., Hall, I.M.: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6), 841–2 (2010). https://doi.org/10.1093/bioinformatics/btq033. Mar

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rivas, E., Eddy, S.R.: Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinform. 2, 8 (2001). https://doi.org/10.1186/1471-2105-2-8

    Article  CAS  Google Scholar 

  22. Santos-Zavaleta, A., et al.: RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res. 47(D1), D212–D220 (2019). https://doi.org/10.1093/nar/gky1077

  23. Tang, G., Shi, J., Wu, W., Yue, X., Zhang, W.: Sequence-based bacterial small RNAs prediction using ensemble learning strategies. BMC Bioinform. 19(Suppl 20), 503 (2018). https://doi.org/10.1186/s12859-018-2535-1. Dec

    Article  CAS  Google Scholar 

  24. Wagner, E.G.H., Romby, P.: Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv. Genet. 90, 133–208 (2015). https://doi.org/10.1016/bs.adgen.2015.05.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to L.P.-C. (Grant number RGPIN: 2019-05247). This research was enabled in part by support provided by ACENET (www.ace-net.ca/) and Compute Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Peña-Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sorkhian, M., Nagari, M., Elsisy, M., Peña-Castillo, L. (2022). Improving Bacterial sRNA Identification By Combining Genomic Context and Sequence-Derived Features. In: Chicco, D., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2021. Lecture Notes in Computer Science(), vol 13483. Springer, Cham. https://doi.org/10.1007/978-3-031-20837-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20837-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20836-2

  • Online ISBN: 978-3-031-20837-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics