Skip to main content

Abstract

By regulating agent interactions, norms facilitate coordination in multiagent systems. We investigate challenges and opportunities in the emergence of norms of prosociality, such as vaccination and mask wearing. Little research on norm emergence has incorporated social preferences, which determines how agents behave when others are involved.

We evaluate the influence of preference distributions in a society on the emergence of prosocial norms. We adopt the Social Value Orientation (SVO) framework, which places value preferences along the dimensions of self and other. SVO brings forth the aspects of values most relevant to prosociality. Therefore, it provides an effective basis to structure our evaluation.

We find that including SVO in agents enables (1) better social experience; and (2) robust norm emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Ajmeri, N., Singh, M.P.: Socially intelligent genetic agents for the emergence of explicit norms. In: Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI), pp. 1–7. IJCAI, Vienna (2022)

    Google Scholar 

  2. Ajmeri, N., Guo, H., Murukannaiah, P.K., Singh, M.P.: Arnor: modeling social intelligence via norms to engineer privacy-aware personal agents. In: Proceedings of the 16th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 230–238. IFAAMAS, São Paulo (2017). https://doi.org/10.5555/3091125.3091163

  3. Ajmeri, N., Guo, H., Murukannaiah, P.K., Singh, M.P.: Robust norm emergence by revealing and reasoning about context: Socially intelligent agents for enhancing privacy. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pp. 28–34. IJCAI, Stockholm (2018). https://doi.org/10.24963/ijcai.2018/4

  4. Ajmeri, N., Guo, H., Murukannaiah, P.K., Singh, M.P.: Elessar: ethics in norm-aware agents. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 16–24. IFAAMAS, Auckland (2020). https://doi.org/10.5555/3398761.3398769

  5. Charness, G., Rabin, M.: Understanding social preferences with simple tests. Q. J. Econ. 117(3), 817–869 (2002)

    Article  MATH  Google Scholar 

  6. Declerck, C.H., Bogaert, S.: Social value orientation: related to empathy and the ability to read the mind in the eyes. J. Social Psychol. 148(6), 711–726 (2008). https://doi.org/10.3200/SOCP.148.6.711-726

    Article  Google Scholar 

  7. Dell’Anna, D., Dastani, M., Dalpiaz, F.: Runtime revision of norms and sanctions based on agent preferences. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1609–1617. IFAAMAS (2019). https://doi.org/10.5555/3306127.3331881

  8. Griesinger, D.W., Livingston Jr., J.W.: Toward a model of interpersonal motivation in experimental games. Behav. Sci. 18(3), 173–188 (1973). https://doi.org/10.1002/bs.3830180305

  9. Huhns, M.N., Singh, M.P. (eds.): Readings in Agents. Morgan Kaufmann, San Francisco (1998). ISBN 9780080515809

    Google Scholar 

  10. Kalia, A.K., Ajmeri, N., Chan, K., Cho, J.H., Adalı, S., Singh, M.P.: The interplay of emotions and norms in multiagent systems. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), pp. 371–377. IJCAI, Macau (2019). https://doi.org/10.24963/ijcai.2019/53

  11. Kurtan, A.C., Yolum, P.: Assisting humans in privacy management: an agent-based approach. Auton. Agents Multi-Agent Syst. 35(1), 1–33 (2020). https://doi.org/10.1007/s10458-020-09488-1

    Article  Google Scholar 

  12. Masad, D., Kazil, J.: MESA: an agent-based modeling framework. In: Proceedings of the 14th PYTHON in Science Conference, pp. 53–60 (2015)

    Google Scholar 

  13. Mashayekhi, M., Ajmeri, N., List, G.F., Singh, M.P.: Prosocial norm emergence in multiagent systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 17, 1–24 (2022)

    Article  Google Scholar 

  14. McKee, K.R., Gemp, I.M., McWilliams, B., Duéñez-Guzmán, E.A., Hughes, E., Leibo, J.Z.: Social diversity and social preferences in mixed-motive reinforcement learning. In: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 869–877. IFAAMAS, Auckland (2020). https://doi.org/10.5555/3398761.3398863

  15. de Mooij, J., Dell’Anna, D., Bhattacharya, P., Dastani, M., Logan, B., Swarup, S.: Quantifying the effects of norms on COVID-19 cases using an agent-based simulation. In: Van Dam, K.H., Verstaevel, N. (eds.) MABS 2021. LNCS (LNAI), vol. 13128, pp. 99–112. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94548-0_8

    Chapter  Google Scholar 

  16. Mosca, F., Such, J.M.: ELVIRA: an explainable agent for value and utility-driven multiuser privacy. In: Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 916–924. IFAAMAS, London (2021). https://doi.org/10.5555/3463952.3464061

  17. Murphy, R.O., Ackermann, K.A.: Social value orientation: theoretical and measurement issues in the study of social preferences. Pers. Social Psychol. Rev. 18(1), 13–41 (2014). https://doi.org/10.1177/1088868313501745

    Article  Google Scholar 

  18. Murukannaiah, P.K., Ajmeri, N., Jonker, C.M., Singh, M.P.: New foundations of ethical multiagent systems. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1706–1710. IFAAMAS, Auckland (2020). https://doi.org/10.5555/3398761.3398958, Blue Sky Ideas Track

  19. Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, New York (1988). https://doi.org/10.1017/CBO9780511571299

  20. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, pp. 473–484 (1991). reprinted in [9]

    Google Scholar 

  21. Rummel, R.J.: Understanding Conflict and War: Vol. 1: The Dynamic Psychological Field. Sage Publications, Thousand Oaks (1975)

    Google Scholar 

  22. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Upper Saddle River (2010)

    MATH  Google Scholar 

  23. Schwartz, S.H.: An overview of the schwartz theory of basic values. Online Read. Psychol. Cult. 2(1), 0919–2307 (2012). https://doi.org/10.9707/2307-0919.1116

    Article  Google Scholar 

  24. Serramia, M., et al.: Moral values in norm decision making. In: Proceedings of the 17th Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1294–1302. IFAAMAS, Stockholm (2018). https://doi.org/10.5555/3237383.3237891

  25. Slovic, P.: The construction of preference. Am. Psychol. 50(5), 364 (1995). https://doi.org/10.1037/0003-066X.50.5.364

    Article  Google Scholar 

  26. Szekely, A., et al.: Evidence from a long-term experiment that collective risks change social norms and promote cooperation. Nat. Commun. 12, 5452:1–5452:7 (2021). https://doi.org/10.1038/s41467-021-25734-w

  27. Tielman, M.L., Jonker, C.M., Van Riemsdijk, M.B.: Deriving norms from actions, values and context. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2223–2225 (2019). https://doi.org/10.5555/3306127.3332065

  28. Tsirogianni, S., Sammut, G., Park, E.: Social Values and Good Living. Springer, Netherlands (2014). https://doi.org/10.1007/978-94-007-0753-5_3666

  29. Tzeng, S.T., Ajmeri, N., Singh, M.P.: Noe: norms emergence and robustness based on emotions in multiagent systems. In: Pre-proceedings of the International Workshop on Coordination, Organizations, Institutions, Norms and Ethics for Governance of Multi-Agent Systems (COINE), London, pp. 1–17 (2021). https://arxiv.org/abs/2104.15034

  30. Van Lange, P.A.M.: The pursuit of joint outcomes and equality in outcomes: an integrative model of social value orientation. J. Pers. Social Psychol. 77(2), 337–349 (1999). https://doi.org/10.1037/0022-3514.77.2.337

    Article  Google Scholar 

  31. Verhagen, H.J.: Norm autonomous agents. Ph.D. thesis, Stockholm Universitet (2000)

    Google Scholar 

  32. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992). https://doi.org/10.1007/BF00992698

    Article  MATH  Google Scholar 

  33. Winikoff, M., Sidorenko, G., Dignum, V., Dignum, F.: Why bad coffee? explaining BDI agent behaviour with valuings. Artif. Intell. 300, 103554 (2021). https://doi.org/10.1016/j.artint.2021.103554

    Article  MathSciNet  MATH  Google Scholar 

  34. Woodgate, J., Ajmeri, N.: Macro ethics for governing equitable sociotechnical systems. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1824–1828. IFAAMAS, Online (2022). https://doi.org/10.5555/3535850.3536118, Blue Sky Ideas Track

Download references

Acknowledgments

STT and MPS thank the US National Science Foundation (grant IIS-2116751) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sz-Ting Tzeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tzeng, ST., Ajmeri, N., Singh, M.P. (2022). Fleur: Social Values Orientation for Robust Norm Emergence. In: Ajmeri, N., Morris Martin, A., Savarimuthu, B.T.R. (eds) Coordination, Organizations, Institutions, Norms, and Ethics for Governance of Multi-Agent Systems XV. COINE 2022. Lecture Notes in Computer Science(), vol 13549. Springer, Cham. https://doi.org/10.1007/978-3-031-20845-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20845-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20844-7

  • Online ISBN: 978-3-031-20845-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics