Abstract
By regulating agent interactions, norms facilitate coordination in multiagent systems. We investigate challenges and opportunities in the emergence of norms of prosociality, such as vaccination and mask wearing. Little research on norm emergence has incorporated social preferences, which determines how agents behave when others are involved.
We evaluate the influence of preference distributions in a society on the emergence of prosocial norms. We adopt the Social Value Orientation (SVO) framework, which places value preferences along the dimensions of self and other. SVO brings forth the aspects of values most relevant to prosociality. Therefore, it provides an effective basis to structure our evaluation.
We find that including SVO in agents enables (1) better social experience; and (2) robust norm emergence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Ajmeri, N., Singh, M.P.: Socially intelligent genetic agents for the emergence of explicit norms. In: Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI), pp. 1–7. IJCAI, Vienna (2022)
Ajmeri, N., Guo, H., Murukannaiah, P.K., Singh, M.P.: Arnor: modeling social intelligence via norms to engineer privacy-aware personal agents. In: Proceedings of the 16th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 230–238. IFAAMAS, São Paulo (2017). https://doi.org/10.5555/3091125.3091163
Ajmeri, N., Guo, H., Murukannaiah, P.K., Singh, M.P.: Robust norm emergence by revealing and reasoning about context: Socially intelligent agents for enhancing privacy. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pp. 28–34. IJCAI, Stockholm (2018). https://doi.org/10.24963/ijcai.2018/4
Ajmeri, N., Guo, H., Murukannaiah, P.K., Singh, M.P.: Elessar: ethics in norm-aware agents. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 16–24. IFAAMAS, Auckland (2020). https://doi.org/10.5555/3398761.3398769
Charness, G., Rabin, M.: Understanding social preferences with simple tests. Q. J. Econ. 117(3), 817–869 (2002)
Declerck, C.H., Bogaert, S.: Social value orientation: related to empathy and the ability to read the mind in the eyes. J. Social Psychol. 148(6), 711–726 (2008). https://doi.org/10.3200/SOCP.148.6.711-726
Dell’Anna, D., Dastani, M., Dalpiaz, F.: Runtime revision of norms and sanctions based on agent preferences. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1609–1617. IFAAMAS (2019). https://doi.org/10.5555/3306127.3331881
Griesinger, D.W., Livingston Jr., J.W.: Toward a model of interpersonal motivation in experimental games. Behav. Sci. 18(3), 173–188 (1973). https://doi.org/10.1002/bs.3830180305
Huhns, M.N., Singh, M.P. (eds.): Readings in Agents. Morgan Kaufmann, San Francisco (1998). ISBN 9780080515809
Kalia, A.K., Ajmeri, N., Chan, K., Cho, J.H., Adalı, S., Singh, M.P.: The interplay of emotions and norms in multiagent systems. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), pp. 371–377. IJCAI, Macau (2019). https://doi.org/10.24963/ijcai.2019/53
Kurtan, A.C., Yolum, P.: Assisting humans in privacy management: an agent-based approach. Auton. Agents Multi-Agent Syst. 35(1), 1–33 (2020). https://doi.org/10.1007/s10458-020-09488-1
Masad, D., Kazil, J.: MESA: an agent-based modeling framework. In: Proceedings of the 14th PYTHON in Science Conference, pp. 53–60 (2015)
Mashayekhi, M., Ajmeri, N., List, G.F., Singh, M.P.: Prosocial norm emergence in multiagent systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 17, 1–24 (2022)
McKee, K.R., Gemp, I.M., McWilliams, B., Duéñez-Guzmán, E.A., Hughes, E., Leibo, J.Z.: Social diversity and social preferences in mixed-motive reinforcement learning. In: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 869–877. IFAAMAS, Auckland (2020). https://doi.org/10.5555/3398761.3398863
de Mooij, J., Dell’Anna, D., Bhattacharya, P., Dastani, M., Logan, B., Swarup, S.: Quantifying the effects of norms on COVID-19 cases using an agent-based simulation. In: Van Dam, K.H., Verstaevel, N. (eds.) MABS 2021. LNCS (LNAI), vol. 13128, pp. 99–112. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94548-0_8
Mosca, F., Such, J.M.: ELVIRA: an explainable agent for value and utility-driven multiuser privacy. In: Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 916–924. IFAAMAS, London (2021). https://doi.org/10.5555/3463952.3464061
Murphy, R.O., Ackermann, K.A.: Social value orientation: theoretical and measurement issues in the study of social preferences. Pers. Social Psychol. Rev. 18(1), 13–41 (2014). https://doi.org/10.1177/1088868313501745
Murukannaiah, P.K., Ajmeri, N., Jonker, C.M., Singh, M.P.: New foundations of ethical multiagent systems. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1706–1710. IFAAMAS, Auckland (2020). https://doi.org/10.5555/3398761.3398958, Blue Sky Ideas Track
Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, New York (1988). https://doi.org/10.1017/CBO9780511571299
Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, pp. 473–484 (1991). reprinted in [9]
Rummel, R.J.: Understanding Conflict and War: Vol. 1: The Dynamic Psychological Field. Sage Publications, Thousand Oaks (1975)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Upper Saddle River (2010)
Schwartz, S.H.: An overview of the schwartz theory of basic values. Online Read. Psychol. Cult. 2(1), 0919–2307 (2012). https://doi.org/10.9707/2307-0919.1116
Serramia, M., et al.: Moral values in norm decision making. In: Proceedings of the 17th Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1294–1302. IFAAMAS, Stockholm (2018). https://doi.org/10.5555/3237383.3237891
Slovic, P.: The construction of preference. Am. Psychol. 50(5), 364 (1995). https://doi.org/10.1037/0003-066X.50.5.364
Szekely, A., et al.: Evidence from a long-term experiment that collective risks change social norms and promote cooperation. Nat. Commun. 12, 5452:1–5452:7 (2021). https://doi.org/10.1038/s41467-021-25734-w
Tielman, M.L., Jonker, C.M., Van Riemsdijk, M.B.: Deriving norms from actions, values and context. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2223–2225 (2019). https://doi.org/10.5555/3306127.3332065
Tsirogianni, S., Sammut, G., Park, E.: Social Values and Good Living. Springer, Netherlands (2014). https://doi.org/10.1007/978-94-007-0753-5_3666
Tzeng, S.T., Ajmeri, N., Singh, M.P.: Noe: norms emergence and robustness based on emotions in multiagent systems. In: Pre-proceedings of the International Workshop on Coordination, Organizations, Institutions, Norms and Ethics for Governance of Multi-Agent Systems (COINE), London, pp. 1–17 (2021). https://arxiv.org/abs/2104.15034
Van Lange, P.A.M.: The pursuit of joint outcomes and equality in outcomes: an integrative model of social value orientation. J. Pers. Social Psychol. 77(2), 337–349 (1999). https://doi.org/10.1037/0022-3514.77.2.337
Verhagen, H.J.: Norm autonomous agents. Ph.D. thesis, Stockholm Universitet (2000)
Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992). https://doi.org/10.1007/BF00992698
Winikoff, M., Sidorenko, G., Dignum, V., Dignum, F.: Why bad coffee? explaining BDI agent behaviour with valuings. Artif. Intell. 300, 103554 (2021). https://doi.org/10.1016/j.artint.2021.103554
Woodgate, J., Ajmeri, N.: Macro ethics for governing equitable sociotechnical systems. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1824–1828. IFAAMAS, Online (2022). https://doi.org/10.5555/3535850.3536118, Blue Sky Ideas Track
Acknowledgments
STT and MPS thank the US National Science Foundation (grant IIS-2116751) for support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tzeng, ST., Ajmeri, N., Singh, M.P. (2022). Fleur: Social Values Orientation for Robust Norm Emergence. In: Ajmeri, N., Morris Martin, A., Savarimuthu, B.T.R. (eds) Coordination, Organizations, Institutions, Norms, and Ethics for Governance of Multi-Agent Systems XV. COINE 2022. Lecture Notes in Computer Science(), vol 13549. Springer, Cham. https://doi.org/10.1007/978-3-031-20845-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-20845-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20844-7
Online ISBN: 978-3-031-20845-4
eBook Packages: Computer ScienceComputer Science (R0)