Skip to main content

Motion Induced Scores for 7Tesla rs-fMRI with Post-Mortem Data as Reference

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, 19th International Conference (DCAI 2022)

Abstract

A proper analysis and interpretation of resting-state function Magnetic Resonance Imaging (rs-fMRI) signals is highly dependent upon the capability of discriminating signal from noise. From among the many non-system-related types of noise, the physiological noise and noise related to motion are the most relevant ones. This paper introduces two scores that allow to cluster images so as to identify those with high level motion scores. To do so, we collect post-mortem and in-vivo rs-fMRI signals from 123 individuals, classify them according to motion indicators, and cluster them into groups that somehow establish the level of noise on which they rely. Data was obtained using a 7Tesla rs-MRI system at the Faculty of Medicine of the São Paulo University were captured. From these signals, time series were generated and used to create a nearest-neighbor model capable of scoring the rs-fMRI signals in terms of their motion noise level. The results showed that even in the ideal situation of patient’s zero motion, rs-fMRI signal still displays motion induced noise. A clustering over the patients’ score allowed the identification of cluster of increasing motion-level signals.

Supported by FAPESP and CNPq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)

    Article  Google Scholar 

  2. Lee, M.H., Smyser, C.D., Shimony, J.S.: Resting-state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 34(10), 1866–1872 (2013)

    Article  Google Scholar 

  3. Smith, S.M.: Overview of fMRI analysis. Br. J. Radiol. 77(suppl2), S167–S175 (2004)

    Article  Google Scholar 

  4. Liu, X., Zhang, N., Chang, C., Duyn, J.H.: Co-activation patterns in resting-state fMRI signals. Neuroimage 180, 485–494 (2018)

    Article  Google Scholar 

  5. Greve, D.N., Brown, G.G., Mueller, B.A., Glover, G., Liu, T.T.: A survey of the sources of noise in fMRI. Psychometrika 78(3), 396–416 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, J., Gohel, S., Vachha, B.: Current methods and new directions in resting state fMRI. Clin. Imaging 65, 47–53 (2020)

    Article  Google Scholar 

  7. Liu, T.T.: Noise contributions to the fMRI signal: an overview. Neuroimage 143, 141–151 (2016)

    Article  Google Scholar 

  8. Caballero-Gaudes, C., Reynolds, R.C.: Methods for cleaning the BOLD fMRI signal. Neuroimage 154, 128–149 (2017)

    Article  Google Scholar 

  9. Power, J.D., Schlaggar, B.L., Petersen, S.E.: Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105, 536–551 (2015)

    Article  Google Scholar 

  10. Mohan, J., Krishnaveni, V., Guo, Y.: A survey on the magnetic resonance image denoising methods. Biomed. Signal Process. Control 9, 56–69 (2014)

    Article  Google Scholar 

  11. Khosla, M., Jamison, K., Ngo, G.H., Kuceyeski, A., Sabuncu, M.R.: Machine learning in resting-state fMRI analysis. Magn. Reson. Imaging 64, 101–121 (2019)

    Article  Google Scholar 

  12. Steardo Jr, L., Carbone, E. A., De Filippis, R., Pisanu, C., Segura-Garcia, C., Squassina, A., Steardo, L.: Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: a systematic review. Front. Psych. 588 (2020)

    Google Scholar 

  13. Cohen, J.D., Daw, N., Engelhardt, B., Hasson, U., Li, K., Niv, Y., ... & Willke, T.L.: Computational approaches to fMRI analysis. Nat. Neurosci. 20(3), 304–313 (2017)

    Google Scholar 

  14. Specht, K.: Current challenges in translational and clinical fMRI and future directions. Front. Psych. 924 (2020)

    Google Scholar 

  15. Cho, G., Yim, J., Choi, Y., Ko, J., Lee, S.H.: Review of machine learning algorithms for diagnosing mental illness. Psych. Investig. 16(4), 262 (2019)

    Article  Google Scholar 

  16. Santana, C.P., de Carvalho, E.A., Rodrigues, I.D., Bastos, G.S., de Souza, A.D., de Brito, L.L.: rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis. Sci Rep. 2022 Apr 11; 12(1), 6030 (2022). https://doi.org/10.1038/s41598-022-09821-6.PMID: 35411059

  17. Mera Jimenez, L., Ochoa Gómez, J.F.: Volume Reduction Techniques for the Classification of Independent Components of rs-fMRI Data: A Study with Convolutional Neural Networks, Neuroinformatics (2021). https://doi.org/10.1007/s12021-021-09524-9

  18. Kundu, P., Voon, V., Balchandani, P., Lombardo, M.V., Poser, B.A., Bandettini, P.A.: Multi-echo fMRI: a review of applications in fMRI denoising and analysis of BOLD signals. Neuroimage 154, 59–80 (2017)

    Article  Google Scholar 

  19. Jenkinson, M., Smith, S.M.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    Article  Google Scholar 

  20. Jenkinson, M., Bannister, P.R., Brady, J.M., Smith, S.M.: Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  21. Smitha, K.A., Akhil Raja, K., Arun, K.M., et al.: Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J. 30(4), 305–317 (2017). https://doi.org/10.1177/1971400917697342

    Article  Google Scholar 

  22. Heilmaier, et al.: A large-scale study on subjective perception of discomfort during 7 and 1.5 T MRI examinations. Bioelectromagnetics 32, 610–619 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Pasti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pasti, R., Chaim, K.T., Otaduy, M.C.G., de Faria, P.M., Biczyk, M., de Castro, L.N. (2023). Motion Induced Scores for 7Tesla rs-fMRI with Post-Mortem Data as Reference. In: Omatu, S., Mehmood, R., Sitek, P., Cicerone, S., Rodríguez, S. (eds) Distributed Computing and Artificial Intelligence, 19th International Conference. DCAI 2022. Lecture Notes in Networks and Systems, vol 583. Springer, Cham. https://doi.org/10.1007/978-3-031-20859-1_23

Download citation

Publish with us

Policies and ethics