
Cost-sensitive learning and threshold-moving
approach to improve industrial lots release

process on imbalanced datasets

Armindo Lobo1[0000−0002−1517−9328], Pedro Oliveira1[0000−0001−7143−5413],
Paulo Sampaio1[0000−0002−0879−1084], and Paulo Novais1[0000−0002−3549−0754]

ALGORITMI Centre, University of Minho, Braga, Portugal
{lobo.armindo,poliveira199208}@gmail.com,

paulosampaio@dps.uminho.pt, pjon@di.uminho.pt

Abstract. With Industry 4.0, companies must manage massive and gen-
erally imbalanced datasets. In an automotive company, the lots release
decision process must cope with this problem by combining data from dif-
ferent sources to determine if a selected group of products can be released
to the customers. This work focuses on this process and aims to clas-
sify the occurrence of customer complaints with a conception, tune and
evaluation of five ML algorithms, namely XGBoost (XGB), LightGBM
(LGBM), CatBoost (CatB), Random Forest(RF) and a Decision Tree
(DT), based on an imbalanced dataset of automatic production tests. We
used a non-sampling approach to deal with the problem of imbalanced
datasets by analyzing two different methods, cost-sensitive learning and
threshold-moving. Regarding the obtained results, both methods showed
an effective impact on boosting algorithms, whereas RF only showed im-
provements with threshold-moving. Also, considering both approaches,
the best overall results were achieved by the threshold-moving method,
where RF obtained the best outcome with a F1-Score value of 76.2%.

Keywords: Cost-sensitive learning · Imbalanced data · Machine Learn-
ing · Threshold-moving · Lots release.

1 Introduction

Industry 4.0 companies rely on process digitization, automation, and real-time
operations to improve customer service [1]. Among these processes, lots release
can significantly impact service quality.

Manually configured rules usually govern this process. Machine Learning
(ML) can optimize it, improving the quality of lots release decision rates and cus-
tomer satisfaction by reducing complaints. For this, managing imbalanced data
from different data sources is crucial [2]. This is the case of the studied company
with a software application that manages this process by applying rules defined
heuristically and dealing with heavily imbalanced datasets.

In this paper two approaches to manage imbalanced datasets from auto-
matic production tests and customer complaints as case-study are explored:
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cost-sensitive learning and threshold moving. Five ML algorithms were con-
ceived, tuned, evaluated and compared to classify the occurrence of a customer
complaint based on the results of automatic production tests: XGBoost (XGB),
LightGBM (LGBM), CatBoost (CatB), Random Forest (RF) and Decision Tree
(DT) .

The remainder of this paper is organized as follows. Section 2 presents the
related work. Section 3 describes the methods used to deal with imbalanced
datasets, the ML algorithms considered, evaluation metrics, and how the data
were collected and pre-processed. Section 4 describes the experiments carried
out, and Section 5 discusses the obtained results. Finally, in Section 6 are given
the main conclusions and future work directions.

2 State of the Art

Several studies were carried out to deal with the imbalanced datasets problem.
Costa et al. [3] carried out a study that uses ML models to predict the failure of
a specific component of the Air Pressure System. They evaluate four ML algo-
rithms, K-Nearest Neighbors (Knn), Logistic Regression (LR), Support-vector
machine (SVM), DT, and RF. To cope with the imbalanced dataset, they used
a cost-sensitive learning approach by adjusting the weights of SVM and LR that
were inversely proportional to the fraction of cases of the corresponding class.
Regarding RF and Knn, they empirically adjust the classification threshold by
increasing it to improve their performance. Considering the results of the four
algorithms, RF obtained the best results with a misclassification value of 3.74%
for False Positives and 3.7% for False Negatives.

Altinger et al. [4] focus on a resampling (oversampling and undersampling)
approach to managing automotive software fault prediction on highly imbal-
anced datasets, analyzing different classification algorithms with F1-Score and
G-Measure as performance metrics. Undersampling only achieves good results
with SVM with radial basis function Kernel, whereas oversampling achieves good
results for Naive Bayes (NB), Ada Boost M1 with NB, and the divide and con-
quer SVM. They also conclude that XGBoost shows improvements with massive
oversampling and SVM performance decrease with high oversampling. Concern-
ing the predictability by sampling, boosting algorithms (XGBoost, Ada Boost
M1) are the most unpredictable, and NB was the most stable predictor achieving
the best results with undersampling and oversampling approaches.

Pereira et al. [5] analyze the handle of highly imbalanced data from eight
datasets of an automotive manufacturing company considering four ML algo-
rithms (RF, two AutoML methods and AutoEncoder) and five balancing tech-
niques based on a two-stage performance comparison. In the first stage, all al-
gorithms were analyzed considering two products and three balancing strate-
gies: None, Synthetic Minority Oversampling Technique (SMOTE) and Gaussian
Copula (GC). RF achieved the best results considering the overall classification
and computational effort. In the second phase, all datasets were considered with
five balancing methods, namely: None, SMOTE, GC, Random Undersampling,



Cost-sensitive learning and threshold-moving on lots-release process

and Tomek Links to deeper analyze RF. In this scenario, the authors achieved
the best results by combining RF with Gaussian Copula with an average Area
Under the Curve (AUC) of 67.31.

We consider cost-sensitive learning and a threshold-moving analysis approach
instead of the sampling method, common in many studies to deal with imbal-
anced datasets. We also use a Precision-Recall Curve analysis to calculate the
best value of the threshold instead of defining it empirically.

3 Materials and methods

This section details the materials and methods used in this study. Data prepa-
ration, data exploration, the ML models used and the evaluation metrics are
described in the following lines.

3.1 Data exploration

The main dataset used in this study is based on the production tests database
from an automotive company, considering the period between 2019 and 2021.
Due to its nature and volume, millions of tests are generated daily. Hence, the
data is stored in a Hadoop cluster. The initial dataset whose an excerpt is avail-
able [6] has 2076005 records and 27 features. Table 1 lists some of them:

Table 1: Some features of interest in the original dataset

Field ID Description

product Product ID number (type of product)

serial Unique ID of a product

stationid Unique station ID

gof status Result of test sequence(GOF- ”Good or Fail”)

3.2 Data preparation

Due to the huge amount of data, the following restrictions and conditions were
applied to ensure a representative dataset that includes tests related to com-
plaints and without complaints:

– Select only the top 10 products with more complaints in 2021.
– Select a subset of 2 million tests without complaints in 2019,2020, and 2021.

We applied feature engineering to create new features based on the first insights
on data conducted with data exploration.

In this process, new features were created manually, namely ”hascomplaint”
classified as the target to identify if a test is related to a complaint or not,
and others concerning tests and their limit values. Featuretools, which applies
the concept of deep feature synthesis [7], was used to create automatically 18
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aggregation and transformation features related to fails and datetime of tests,
such as the percentage of the test fails and weekday.

In the data cleaning process, we dropped the rows with missing values. Spear-
man’s rank correlation coefficient was used to evaluate correlation among fea-
tures, excluding the target, and drop highly correlated ones to avoid multi-
collinearity.

After this process, the final dataset has 1611371 records and 33 features. The
two classes are distributed in the following manner, 3.3% from the class of tests
related to customer complaints and 96.7% from the other class.

3.3 Evaluation metrics

As the process is trying to classify which tests will lead to customer complaints,
this classification problem was mainly evaluated using the confusion matrix [8].

The confusion matrix has four categories. True Positives is the number of
examples of the positive class correctly predicted by the model. True Negatives
is the number of examples of the negative class correctly predicted by the model.
False Positives is the number of examples of positive class incorrectly predicted
by the model. False Negatives is the number of examples of negative class incor-
rectly predicted by the model. Based on these values and as the focus is to deal
with imbalanced datasets F1-Score, Precision and Recall metrics are analyzed.
Recall is the fraction of positive labels correctly identified by the model.

Recall =
TruePositives

TruePositives+ FalseNegatives

Precision is the fraction of results that are relevant.

Precision =
TruePositives

TruePositives+ FalsePositives

F1-score is the harmonic-mean of precision and recall

FScore = 2× precision× recall

precision+ recall

.

3.4 Decision Trees

DT is a MLmodel structured with three main components, a root node, branches,
and leaf nodes. Each internal node represents an attribute ”test,” each branch
represents the test’s result, and each leaf node represents a class label. The de-
cisions are taken when all attributes are computed. DT models can be used
both on classification and regression problems and, due to their nature, generate
results that are easier to interpret and explain [9].
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3.5 Random Forest

RF is an ensemble method created with several small decision trees called es-
timators. Each one of these estimators is conceived with a random subset of
features and produces its predictions. These predictions, trained independently,
are combined to produce a more accurate forecast. RF deals well with the over-
fitting and generalizes well to new data. The result of RF is the class selected by
most trees on classification or the average of predictions on regression problems.
RF uses the concept of bootstrap aggregating or bagging. Some samples from
the original dataset are generated randomly by replacement, meaning that each
row can be selected more than once [10].

3.6 Gradient Boosting: XGBoost, LightGBM and CatBoost

Boosting is an ensemble learning method consisting of a set of weak learners
(models that perform slightly better than random guessing) that are applied
sequentially and combined into a strong learner [11]. A boosting algorithm opti-
mizes a loss function and assigns different weights to its estimator’s outputs. In
gradient boosting, which combines the gradient descent algorithm and boosting
method, the predictors are not made independently, such as RF, but sequentially,
where each tree corrects the errors made by the previous tree.

XGBoost is an advanced implementation of a gradient boosting algorithm that
uses a new regularization technique to control the overfitting and was designed
to improve scalability and speed using far fewer resources than existing systems.
In XGB, decision trees are grown level-wise, meaning that trees are growing
horizontally. A new level only expands when the previous is already expanded.
Other distinctive features are its sparsity-aware algorithm and weighted quantile
sketch for approximate tree learning to deal with sparse data and how it takes
advantage of hardware resources. All of these capabilities make XGB able to
deal with enormous datasets efficiently [11].

LightGBM is another advanced implementation of a gradient boosting algo-
rithm designed to reduce the implementation time. One distinctive aspect of
LGBM is that decision trees are grown leaf-wise, meaning that trees are grow-
ing vertically. Several advantages are associated with LGBM, such as a faster
training speed, higher efficiency, better accuracy, support of parallel and GPU
learning, handling of large-scale data, and memory optimization [11].

CatBoost is another advanced implementation of a gradient boosting algo-
rithm. CatB is structured using symmetric or oblivious trees, meaning that at
each level of the tree, it uses the same features to split learning instances. CatB
brings two major advancements in gradient boosting algorithms, an innovative
algorithm for processing categorical features, as well as the implementation of
ordered boosting [11].
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3.7 Cost-sensitive learning

Cost-sensitive learning is applied at an algorithmic level, based on a cost matrix,
where conceptually, the cost of misclassification should always be greater than
the cost of correct classification [12]. This technique aligns with the problem of
dealing with imbalanced datasets with a skewed class distribution.

In this study, cost-sensitive learning is implemented by adjusting the weight
of each class through the parameter class weight available for each analyzed
algorithm. The parameter scale pos weight calculates the weights of each class
according to the following formula:

scale pos weight =

∑
(testsok)∑
(testsfail)

is used in XGB, CatB and LGBM models. For RF and DT, the class weight
parameter that automatically adjusts weights inversely proportional to class fre-
quencies was instantiated with “balanced” mode.

3.8 Threshold-moving

In classification problems, algorithms try to predict the probability of class mem-
bership by comparing it against a defined threshold (0.5 by default). The de-
fault threshold may not be appropriate when dealing with imbalanced datasets
and lead to poor results. One way to tackle this problem can be made through
threshold-moving or thresholding which consists in adjusting the threshold from
the training instances and tuning it to achieve the best results [13].

This threshold analysis can be made using ROC Curve or Precision-Recall
Curve. ROC Curve is obtained by plotting the true positive rate versus the false
positive rate at different threshold values. On the other hand, Precision-Recall
Curve plots the trade-off between precision values and corresponding recall val-
ues for a predictive model at different probability thresholds.

To perform this threshold analysis, we considered the Precision-Recall curve,
as different studies have concluded that it is more suitable than the ROC curve
to deal with highly unbalanced data [14].

4 Experiments

Five ML models were conceived, tuned, and evaluated to carry out the study.
The dataset was split, using 80% for training and 20% for testing. To tune and
find the best hyperparameters for these models, Hyperopt was used [15].

The hyperparameters searched are the same for all gradient boosting algo-
rithms. RF and DT also have similarly searched hyperparameters except for
n estimators which is not available for DT. Table 2 depicts the hyperparameter
searching space.

This study was implemented using Python, version 3.7, including some li-
braries such as Pandas, Numpy and MatPlotlib. All the ML models were con-
ceived using Scikit-Learn.
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Table 2: Hyperparameter searching space

Hyperparameter DT RF XGB LGBM CatB

n estimators — {100,200,300} {70,80,90,100} {70,80,90,100} {70,80,90,100}
max depth {10,20,30} {10,20,30} {3,4,5} {3,4,5} {3,4,5}
learning rate — — [.1,.3] [.1,.3] [.1,.3]

colsample bytree — — {.5,.6,.7,.8.,.9,1} {.5,.6,.7,.8.,.9,1}—

min samples leaf {1,2,4} {1,2,4} — — —

min samples split {2,4,6} {2,4,6} — — —

5 Results and Discussion

A cost-sensitive learning and threshold-moving approach were carried out on
an imbalanced dataset to analyse the obtained results by the different mod-
els. Table 3 shows the results for each model, obtained without adjusting the
class weight parameter. The best hyperparameters found and used in the whole
process, with the different approaches, are included here.

Table 3: Obtained results for conceived models without class weight adjustments.
Legend: a-n estimators; b-max depth; c-learning rate; d-colsample bytree; e-
min samples leaf; f-min samples split

Model a b c d e f Precision Recall F1-Score

DT — 20 — – 2 6 66.7% 42.2% 51.7%

RF 100 20 — — 1 6 100% 21.7% 35.7%

XGB 70 5 .2527 .6 — — 98.5% 26.3% 41.5%

LGBM 100 4 .2953 .9 — — 83.7% 34.2% 48.5%

CatB 100 5 .2533 — — — 81.9% 27.3% 41.0%

As shown, without adjustments, DT achieves the best F1-Score with a value
of 51.7%. Regarding hyperparameters, DT and RF shared the same value of
max depth and min samples split. XGB and CatB has very similar learning rate
values and the same value for max depth. Table 4 shows the results by adjusting
the class weight parameter for each model.

Table 4: Obtained results for conceived models with class weight adjustment

Model Precision Recall F1-Score

DT 51.3% 31.1% 38.8%

RF 100% 15.6% 27.0%

XGB 84.9% 47.2% 60.7%

LGBM 67.7% 46.9% 55.4%

CatB 70.7% 41.1% 52.0%

The results demonstrate that the cost-sensitive learning approach effectively
impacted boosting algorithms, where XGBoost achieved the best outcome glob-
ally with a F1-Score value of 60.7%. However, this approach was not effective on
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DT and RF, with a decrease in their results. When using the threshold-moving
approach, it is necessary to analyze the precision-recall curve to identify the op-
timal threshold regarding F1-Score for each model [16]. By optimizing F1-Score,
it is possible to calculate the threshold that results in the best trade-off be-
tween precision and recall. Table 5 lists the results of applying threshold-moving
adjustment to the different ML models.

Table 5: Obtained results for conceived models with threshold-moving

Model Precision Recall F1-Score

DT 65.8% 41.5% 50.9%

RF 77.7% 74.6% 76.2%

XGB 79.5% 51.3% 62.4%

LGBM 61.4% 53.9% 57.4%

CatB 58.2% 47.0% 52.0%

As demonstrated on Table 5, when compared with the values without ad-
justments, all algorithms, except DT, improved their results with the threshold-
moving method. The best overall result was achieved by RF with a F1-Score of
76.2%. Analyzing the best results for F1-Score and comparing its gains against
the obtained results without any adjustments, RF obtained 40.5 percentage
points gains with the threshold-moving approach.

Fig. 1 depicts the evolution of the Precision-Recall curve and F1-Score ac-
cording to different thresholds for RF model. As shown in chart (a), as one of
these values increases, the other decreases. The best trade-off between them is
achieved when both curves intersect each other. F1-Score reflects this in the
chart (b), which calculates the best balance between Precision and Recall.

(a) Precision-Recall Curve (b) Optimal threshold for F1-Score

Fig. 1: Random Forest - threshold-moving analysis

The threshold-moving achieved the best overall outcome for F1-Score, where
RF achieves the best result. Boosting algorithms showed consistent results and
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improvements with both methods, whereas DT didn’t show improvements and
RF only improved with threshold-moving.

6 Conclusion

In an industry 4.0 context, companies must deal with vast amounts of data
gathered from multiple sensors and different data sources, leading to imbalanced
datasets. This is the case of the studied company, whose lots release process relies
on an SW based on rules defined heuristically. We propose a new approach that
aims to establish a relationship between customer complaints and automatic
tests by applying ML models that deal with imbalanced datasets, to help in the
lots release decision process. We found that the overall efficiency of the process
is improved thus reduce customer complaints.

This study focused on analyzing two different approaches to dealing with
imbalanced datasets. Cost-sensitive learning and threshold-moving are analyzed
and evaluated according to their impact on F1-Score results. To achieve this,
several experiments were conceived, tuned, evaluated and compared, considering
five ML algorithms.

The results showed that both methods are effective in improving the F1-Score
result of boosting algorithms. Whereas RF only showed improvements with the
threshold-moving approach, and DT did not improve with any of them. From
the analysis of results, it is possible to conclude that globally, the threshold-
moving approach achieved the best overall outcome, and among the analyzed
algorithms, the best one was achieved by RF with a F1-Score value of 76.2%.

As future work, some sampling methods to deal with imbalanced datasets
should also be considered and analyzed, namely SMOTE for oversampling, Tomek
Links for undersampling and SMOTE-Tomek that is a combination of both. We
also intend to consider adding new features from other datasets, such as product
repairs. This should result in more correlations with customer complaints and im-
prove the classification results. We also intend to explore new algorithms, namely
artificial neural networks and improving hyper-parameter tuning, to compare the
results with the ones in this study.
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