Skip to main content

Deep Forest with Sparse Topological Feature Extraction and Hash Mapping for Brain Network Classification

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13629))

Included in the following conference series:

  • 1168 Accesses

Abstract

As a novel non-neural network style deep learning method, the deep forest can perform effective feature learning without relying on a large amount of training data, thus brings us some opportunities to accurately classify brain networks (BNs) on limited fMRI data. Currently, preliminary attempts to use deep forest to classify BNs are already emerging. However, these studies simply adopted the sliding windows to scan the inputted BNs and failed to consider the inherent sparsity of BNs, which makes them susceptible to those redundant edges in BNs with little weight. In this paper, we propose a deep forest framework with sparse topological feature extraction and hash mapping (DF-STFEHM) for BN classification. Specifically, we first design an extremely random forest guided by a weighted random walk (ERF-WRW) to extract sparse topological features from BNs, where the random walk strategy is used to capture their topological structures and the weighted strategy is used to reduce the influence of redundant edges with little weight. Then, we map these sparse topological features into a compact hashing space by a kernel hashing, which can better preserve topological similarities of brain networks in the hashing space. Finally, the obtained hash codes are fed into the casForest to perform deeper feature learning and classification. Experimental results on ABIDE I and ADHD-200 datasets show that the DF-STFEHM outperforms several state-of-the-art methods on classification performance and accurately identifies abnormal brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, N., et al.: Role-based graph embeddings. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  2. Ball, G., et al.: Machine-learning to characterise neonatal functional connectivity in the preterm brain. Neuroimage 124, 267–275 (2016)

    Article  Google Scholar 

  3. Behrouzi, T., Hatzinakos, D.: Graph variational auto-encoder for deriving EEG-based graph embedding. Pattern Recogn. 121, 108202 (2022)

    Article  Google Scholar 

  4. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  5. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Google Scholar 

  6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  7. Guerra-Carrillo, B., Mackey, A.P., Bunge, S.A.: Resting-state fmri: a window into human brain plasticity. Neuroscientist 20(5), 522–533 (2014)

    Article  Google Scholar 

  8. He, J., Liu, W., Chang, S.F.: Scalable similarity search with optimized kernel hashing. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1129–1138 (2010)

    Google Scholar 

  9. Huang, Z.A., Zhu, Z., Yau, C.H., Tan, K.C.: Identifying autism spectrum disorder from resting-state fmri using deep belief network. IEEE Trans. Neural Networks Learn. Syst. 32(7), 2847–2861 (2020)

    Article  Google Scholar 

  10. Ji, J., Xing, X., Yao, Y., Li, J., Zhang, X.: Convolutional kernels with an element-wise weighting mechanism for identifying abnormal brain connectivity patterns. Pattern Recogn. 109, 107570 (2021)

    Article  Google Scholar 

  11. Jie, B., Liu, M., Zhang, D., Shen, D.: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis. IEEE Trans. Image Process. 27(5), 2340–2353 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kawahara, J., et al.: Brainnetcnn: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  Google Scholar 

  13. Li, J., Ji, J., Liang, Y., Zhang, X., Wang, Z.: Deep forest with cross-shaped window scanning mechanism to extract topological features. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 688–691. IEEE (2019)

    Google Scholar 

  14. Li, L., et al.: Te-hi-gcn: an ensemble of transfer hierarchical graph convolutional networks for disorder diagnosis. Neuroinformatics, pp. 1–23 (2021)

    Google Scholar 

  15. Lluis, Borràs-Ferrís, Úrsula, Pérez-Ramírez, David, Moratal: Link-level functional connectivity neuroalterations in autism spectrum disorder: a developmental resting-state fmri study. Diagnostics (Basel, Switzerland) (2019)

    Google Scholar 

  16. Marzullo, A., Kocevar, G., Stamile, C., Durand-Dubief, F., Terracina, G., Calimeri, F., Sappey-Marinier, D.: Classification of multiple sclerosis clinical profiles via graph convolutional neural networks. Front. Neurosci. 13, 594 (2019)

    Article  Google Scholar 

  17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  18. Milham, M.P., Fair, D., Mennes, M., Mostofsky, S.H., et al.: The adhd-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6, 62 (2012)

    Google Scholar 

  19. Nicholson, A.A., et al.: Classifying heterogeneous presentations of ptsd via the default mode, central executive, and salience networks with machine learning. NeuroImage Clinical 27, 102262 (2020)

    Google Scholar 

  20. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  21. Qian, L., Li, Y., Wang, Y., Wang, Y., Cheng, X., Li, C., Cui, X., Jiao, G., Ke, X.: Shared and distinct topologically structural connectivity patterns in autism spectrum disorder and attention-deficit/hyperactivity disorder. Frontiers in Neuroscience 15 (2021)

    Google Scholar 

  22. Shao, L., Zhang, D., Du, H., Fu, D.: Deep forest in adhd data classification. IEEE Access 7, 137913–137919 (2019)

    Article  Google Scholar 

  23. Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  24. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Google Scholar 

  25. Xu, M.: Understanding graph embedding methods and their applications. SIAM Rev. 63(4), 825–853 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zeng, K., Kang, J., Ouyang, G., Li, J., Han, J., Wang, Y., Sokhadze, E.M., Casanova, M.F., Li, X.: Disrupted brain network in children with autism spectrum disorder. Sci. Rep. 7(1), 1–12 (2017)

    Article  Google Scholar 

  27. Zhang, H., Li, R., Wen, X., Li, Q., Wu, X.: Altered time-frequency feature in default mode network of autism based on improved hilbert-huang transform. IEEE J. Biomed. Health Inform. 25(2), 485–492 (2020)

    Article  Google Scholar 

  28. Zhang, L., Wang, X.H., Li, L.: Diagnosing autism spectrum disorder using brain entropy: a fast entropy method. Comput. Methods Programs Biomed. 190, 105240 (2020)

    Article  Google Scholar 

  29. Zhou, Y., Wu, C., Tan, L.: Biased random walk with restart for link prediction with graph embedding method. Physica A 570, 125783 (2021)

    Article  MATH  Google Scholar 

  30. Zhou, Z.H., Feng, J.: Deep forest: towards an alternative to deep neural networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 3553–3559 (2017)

    Google Scholar 

  31. Zhu, D., et al.: Classification of major depressive disorder via multi-site weighted LASSO model. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 159–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_19

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by R &D Program of Beijing Municipal Education Commission (KZ202210005009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Ji, J. (2022). Deep Forest with Sparse Topological Feature Extraction and Hash Mapping for Brain Network Classification. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics