Skip to main content

MMISeg: A Semi-supervised Segmentation Method Based on Mixup and Mutual Information for Cardiac MRI Segmentation

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13629))

Included in the following conference series:

  • 1272 Accesses

Abstract

Since the task of annotating medical image labels is pixel-level and needs to be depicted by trained experts, there are few large-scale medical image datasets with annotations. Semi-Supervised Learning (SSL) has become the focus of research for medical image segmentation tasks. The key techniques for our Segmentation method are Mixup and Mutual Information (MMISeg), which involve consistency-based regularization and unsupervised representation learning. On the one hand, we utilize an interpolation-based method to mix unlabeled data, and minimize consistency regularization. On the other hand, by taking the feature of the encoder stage as global feature and the feature of the decoder stage as local feature, we maximize mutual information of global and local features which are from two different transformations of the same image, respectively. Experimental results show that MMISeg outperforms existing semi-supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  2. Basak, H., Bhattacharya, R., Hussain, R., Chatterjee, A.: An embarrassingly simple consistency regularization method for semi-supervised medical image segmentation. arXiv preprint arXiv:2202.00677 (2022)

  3. Belghazi, M.I., et al.: Mutual information neural estimation. In: International Conference on Machine Learning, pp. 531–540. PMLR (2018)

    Google Scholar 

  4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  5. Berthelot, D., Raffel, C., Roy, A., Goodfellow, I.: Understanding and improving interpolation in autoencoders via an adversarial regularizer. arXiv preprint arXiv:1807.07543 (2018)

  6. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  7. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. Adv. Neural. Inf. Process. Syst. 33, 12546–12558 (2020)

    Google Scholar 

  8. Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised and task-driven data augmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_3

    Chapter  Google Scholar 

  9. Chaitanya, K., Karani, N., Baumgartner, C.F., Erdil, E., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised task-driven data augmentation for medical image segmentation. Med. Image Anal. 68, 101934 (2021)

    Article  Google Scholar 

  10. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  11. Faramarzi, M., Amini, M., Badrinaaraayanan, A., Verma, V., Chandar, S.: Patchup: A regularization technique for convolutional neural networks. arXiv preprint arXiv:2006.07794 (2020)

  12. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

  13. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9865–9874 (2019)

    Google Scholar 

  14. Kim, J.H., Choo, W., Jeong, H., Song, H.O.: Co-mixup: Saliency guided joint mixup with supermodular diversity. arXiv preprint arXiv:2102.03065 (2021)

  15. Kim, J.H., Choo, W., Song, H.O.: Puzzle mix: exploiting saliency and local statistics for optimal mixup. In: International Conference on Machine Learning, pp. 5275–5285. PMLR (2020)

    Google Scholar 

  16. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: 24th Proceedings of the International Conference on Advances in Neural Information Processing Systems (2011)

    Google Scholar 

  17. Li, X., Yu, L., Chen, H., Fu, C.W., Heng, P.A.: Semi-supervised skin lesion segmentation via transformation consistent self-ensembling model. arXiv preprint arXiv:1808.03887 (2018)

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  19. Van den Oord, A., et al.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 2(3), 4 (2018)

  20. Peng, J., Pedersoli, M., Desrosiers, C.: Mutual information deep regularization for semi-supervised segmentation. In: Proceedings of the Medical Imaging with Deep Learning, pp. 601–613. PMLR (2020)

    Google Scholar 

  21. Peng, J., Pedersoli, M., Desrosiers, C.: Boosting semi-supervised image segmentation with global and local mutual information regularization. arXiv preprint arXiv:2103.04813 (2021)

  22. Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. Neuroimage 194, 1–11 (2019)

    Article  Google Scholar 

  23. Perone, C.S., Cohen-Adad, J.: Deep Semi-supervised segmentation with weight-averaged consistency targets. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 12–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_2

    Chapter  Google Scholar 

  24. Radosavovic, I., Dollár, P., Girshick, R., Gkioxari, G., He, K.: Data distillation: towards omni-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4119–4128 (2018)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Song, J., Ermon, S.: Understanding the limitations of variational mutual information estimators. arXiv preprint arXiv:1910.06222 (2019)

  27. Souly, N., Spampinato, C., Shah, M.: Semi supervised semantic segmentation using generative adversarial network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5688–5696 (2017)

    Google Scholar 

  28. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  29. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  30. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: International Conference on Machine Learning, pp. 6438–6447. PMLR (2019)

    Google Scholar 

  31. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  32. Wang, X., Qi, G.J.: Contrastive learning with stronger augmentations. arXiv preprint arXiv:2104.07713 (2021)

  33. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference On Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  34. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  35. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep Adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

  36. Zhao, J., Lu, D., Ma, K., Zhang, Yu., Zheng, Y.: Deep Image clustering with category-style representation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 54–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhou Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Pan, H., Zeng, Z. (2022). MMISeg: A Semi-supervised Segmentation Method Based on Mixup and Mutual Information for Cardiac MRI Segmentation. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics