Skip to main content

Dual-Stream Feature Fusion Network for Detection and ReID in Multi-object Tracking

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13629))

Included in the following conference series:

  • 1532 Accesses

Abstract

Multi-object Tracking (MOT) focuses on associating detection boxes with previous results from the same detector using motion and appearance features. Recently, the Joint detection and embedding (JDE) paradigm is showing its efficiency to explore the potentially shared information between the tasks of detection and re-identification (ReID). However, formulating the tasks of detection and ReID into a shared feature fusion network may bring inevitable competition during training. To tackle this problem, we propose a novel dual-stream feature fusion network (DSFFN) to alleviate the competition between the two tasks and obtain better task-dependent feature expression. It forms the detection and ReID feature fusion tasks into a parallel network, and they only share the low-level feature information. Further, to solve the inconsistency across different scales of ReID embeddings and improve the awareness of important information, we propose a multi-scale cross-connected attention network (MSCCAN) for ReID feature fusion. At last, we modify the prediction head to be decoupled design to tackle the conflicts between multi-task. Our method obtains 78.8% MOTA and 74.3% IDF1 on MOT16 test sets, which outperforms the previous works and achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 941–951 (2019)

    Google Scholar 

  2. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP J. Image Video Process. 2008, 1–10 (2008)

    Article  Google Scholar 

  3. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468. IEEE (2016)

    Google Scholar 

  4. Bochinski, E., Senst, T., Sikora, T.: Extending IoU based multi-object tracking by visual information. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2018)

    Google Scholar 

  5. Cai, J., et al.: MeMOT: multi-object tracking with memory. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8090–8100 (2022)

    Google Scholar 

  6. Cao, J., Weng, X., Khirodkar, R., Pang, J., Kitani, K.: Observation-centric sort: Rethinking sort for robust multi-object tracking. arXiv preprint arXiv:2203.14360 (2022)

  7. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  8. Fang, K., Xiang, Y., Li, X., Savarese, S.: Recurrent autoregressive networks for online multi-object tracking. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 466–475. IEEE (2018)

    Google Scholar 

  9. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  10. Liang, C., Zhang, Z., Zhou, X., Li, B., Zhu, S., Hu, W.: Rethinking the competition between detection and ReiD in multiobject tracking. IEEE Trans. Image Process. 31, 3182–3196 (2022)

    Article  Google Scholar 

  11. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  12. Lin, T., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Lin, X., Li, C.T., Sanchez, V., Maple, C.: On the detection-to-track association for online multi-object tracking. Pattern Recogn. Lett. 146, 200–207 (2021)

    Article  Google Scholar 

  14. Liu, Q., et al.: Online multi-object tracking with unsupervised re-identification learning and occlusion estimation. Neurocomputing 483( (2022)

    Google Scholar 

  15. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1001–110022 (2021)

    Google Scholar 

  16. Liu, Z., et al.: A strong baseline and batch normalization neck for deep person re-identification. IEEE Trans. Multim. 22(10), 2597–2609 (2019)

    Google Scholar 

  17. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: Mot16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

  18. Pang, B., Li, Y., Zhang, Y., Li, M., Lu, C.: TubeTK: adopting tubes to track multi-object in a one-step training model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6308–6318 (2020)

    Google Scholar 

  19. Peng, J., et al.: Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 145–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_9

    Chapter  Google Scholar 

  20. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  21. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  22. Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8430–8439 (2019)

    Google Scholar 

  23. Shao, S., et al.: Crowdhuman: a benchmark for detecting human in a crowd. arXiv preprint arXiv:1805.00123 (2018)

  24. Wang, Y., Kitani, K., Weng, X.: Joint object detection and multi-object tracking with graph neural networks. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13708–13715. IEEE (2021)

    Google Scholar 

  25. Wang, Z., Zheng, L., Liu, Y., Li, Y., Wang, S.: Towards real-time multi-object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 107–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_7

    Chapter  Google Scholar 

  26. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649. IEEE (2017)

    Google Scholar 

  27. Wu, J., Cao, J., Song, L., Wang, Y., Yang, M., Yuan, J.: Track to detect and segment: an online multi-object tracker. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12352–12361 (2021)

    Google Scholar 

  28. Yu, F., Li, W., Li, Q., Liu, Yu., Shi, X., Yan, J.: POI: multiple object tracking with high performance detection and appearance feature. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 36–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_3

    Chapter  Google Scholar 

  29. Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3221 (2017)

    Google Scholar 

  30. Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. arXiv preprint arXiv:2110.06864 (2021)

  31. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMoT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vision 129(11), 3069–3087 (2021)

    Article  Google Scholar 

  32. Zhou, Z., Xing, J., Zhang, M., Hu, W.: Online multi-target tracking with tensor-based high-order graph matching. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1809–1814. IEEE (2018)

    Google Scholar 

  33. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (62171287, 61773267), Science & Technology Program of Shenzhen (Grant No. JCYJ20190808120417257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyou He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Q., Li, L. (2022). Dual-Stream Feature Fusion Network for Detection and ReID in Multi-object Tracking. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics