Skip to main content

Robust Weighted Partial Maximum Satisfiability Problem: Challenge to \(\varSigma _{2}^{P}\)-Complete Problem

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Abstract

This paper introduces a new problem called the Robust Maximum Satisfiability problem (R-MaxSAT), as well as its extension called the Robust weighted Partial MaxSAT (R-PMaxSAT). In R-MaxSAT (or R-PMaxSAT), a problem solver called defender hopes to maximize the number of satisfied clauses (or the sum of their weights) as the standard MaxSAT/partial MaxSAT problem, although she must ensure that the obtained solution is robust (In this paper, we use the pronoun “she” for the defender and “he” for the attacker). We assume an adversary called the attacker will flip some variables after the defender selects a solution. R-PMaxSAT can formalize the robust Clique Partitioning Problem (robust CPP), where CPP has many real-life applications. We first demonstrate that the decision version of R-MaxSAT is \(\varSigma _2^P\)-complete. Then, we develop two algorithms to solve R-PMaxSAT, by utilizing a state-of-the-art SAT solver or a Quantified Boolean Formula (QBF) solver as a subroutine. Our experimental results show that we can obtain optimal solutions within a reasonable amount of time for randomly generated R-MaxSAT instances with 30 variables and 150 clauses (within 40 s) and R-PMaxSAT instances based on CPP benchmark problems with 60 vertices (within 500 s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These variables can overlap with the defender’s decision/auxiliary variables.

  2. 2.

    A similar problem is considered in [26], while they assume a coalition’s value is given as a black-box function called a characteristic function.

References

  1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-2009), pp. 399–404 (2009)

    Google Scholar 

  2. Bacchus, F., Järvisalo, M., Martins, R.: Maximum satisfiability. In: Handbook of Satisfiability, Second Edition, pp. 929–991. IOS Press (2021)

    Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, Second Edition, pp. 1267–1329. IOS Press (2021)

    Google Scholar 

  5. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability. Artif. Intell. 244, 110–142 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified Boolean formulas. In: Handbook of Satisfiability, Second Edition, pp. 1177–1221. IOS Press (2021)

    Google Scholar 

  7. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In: Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, vol. B-2020-1, pp. 51–53. Department of Computer Science, University of Helsinki (2020)

    Google Scholar 

  8. Büning, H.K., Bubeck, U.: Theory of quantified Boolean formulas. In: Handbook of Satisfiability, Second Edition, pp. 1131–1156. IOS Press (2021)

    Google Scholar 

  9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_15

    Chapter  Google Scholar 

  10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  11. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  12. Genc, B., Siala, M., O’Sullivan, B., Simonin, G.: Robust stable marriage. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI-2017), pp. 4925–4926 (2017)

    Google Scholar 

  13. Ginsberg, M.L., Parkes, A.J., Roy, A.: Supermodels and robustness. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998), pp. 334–339 (1998)

    Google Scholar 

  14. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified Boolean formulas. In: Handbook of Satisfiability, Second Edition, pp. 1157–1176. IOS Press (2021)

    Google Scholar 

  15. Gonçalves, J.F., Resende, M.G.: An evolutionary algorithm for manufacturing cell formation. Comput. Industr. Eng. 47(2–3), 247–273 (2004)

    Article  Google Scholar 

  16. Groover, M.P.: Automation, Production Systems, and Computer-Integrated Manufacturing. Third Edition, Pearson (2008)

    Google Scholar 

  17. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Program. 45(1–3), 59–96 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ignatiev, A., Janota, M., Marques-Silva, J.: Quantified maximum satisfiability. Constraints 21(2), 277–302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a Python toolkit for prototyping with SAT oracles. In: Proceedings of the 24th International Conference on Theory and Applications of Satisfiability Testing (SAT-2018), pp. 428–437 (2018)

    Google Scholar 

  20. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J. Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ko, K.I., Lin, C.L.: On the complexity of Min-Max optimization problems and their approximation. In: Minimax and Applications, pp. 219–239. Springer (1995). https://doi.org/10.1007/978-1-4613-3557-3_15

  23. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability, Second Edition, pp. 903–927. IOS Press (2021)

    Google Scholar 

  24. Miyauchi, A., Sonobe, T., Sukegawa, N.: Exact clustering via integer programming and maximum satisfiability. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), pp. 1387–1394 (2018)

    Google Scholar 

  25. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Okimoto, T., Schwind, N., Demirović, E., Inoue, K., Marquis, P.: Robust coalition structure generation. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 140–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03098-8_9

    Chapter  Google Scholar 

  27. Rahwan, T., Michalak, T.P., Wooldridge, M.J., Jennings, N.R.: Coalition structure generation: a survey. Artif. Intell. 229, 139–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  30. Tentrup, L.: CAQE and QuAbS: abstraction based QBF solvers. J. Satisf. Boolean Model. Comput. 11(1), 155–210 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by JSPS KAKENHI Grant Numbers JP19H04175, JP20H00609, and JP22K19813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Sugahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sugahara, T., Yamashita, K., Barrot, N., Koshimura, M., Yokoo, M. (2022). Robust Weighted Partial Maximum Satisfiability Problem: Challenge to \(\varSigma _{2}^{P}\)-Complete Problem. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics