Skip to main content

A Multi-output Integration Residual Network for Predicting Time Series Data with Diverse Scales

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13629))

Included in the following conference series:

Abstract

Deep learning methods can fit the observation history over different time series with multiple levels of representations from huge dataset. However, it is challenging to directly train deep neural networks on a raw dataset with a large number of time series, as the different time-series have diverse scales. We initiate the study of an effective deep residual framework named MIR-TS for time series prediction with multi-output integration on time series data with diverse scales. Specifically, we leverage the residual module that constrains the original input average close to 0 to transform the original input, so that the distribution of features changes from sparse to dense. Compared with the traditional residual network, this approach improves the generalization of model via residual reuse, capturing more detailed features of time series to improve prediction. The results on the M3 and TOURISM benchmarks show that MIR-TS achieves a consistent better or highly comparable performance across different time series frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assimakopoulos, V., Nikolopoulos, K.: The theta model: a decomposition approach to forecasting. Int. J. Forecast. 16(4), 521–530 (2000)

    Article  Google Scholar 

  2. Athanasopoulos, G., Hyndman, R.J., Song, H., Wu, D.C.: The tourism forecasting competition. Int. J. Forecast. 27(3), 822–844 (2011)

    Article  Google Scholar 

  3. Baker, L.C., Howard, J.: Winning methods for forecasting tourism time series. Int. J. Forecast. 27(3), 850–852 (2011)

    Article  Google Scholar 

  4. Bandara, K., Hewamalage, H., Liu, Y., Kang, Y., Bergmeir, C.: Improving the accuracy of global forecasting models using time series data augmentation. Pattern Recogn. 120, 108148 (2021)

    Article  Google Scholar 

  5. Benidis, K., et al.: Neural forecasting: introduction and literature overview. CoRR abs/2004.10240 (2020)

    Google Scholar 

  6. Box, G.E.P., Jenkins, G.M., MacGregor, J.F.: Some recent advances in forecasting and control. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 23(2), 158–179 (1974)

    MathSciNet  Google Scholar 

  7. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  MATH  Google Scholar 

  8. Brierley, P.: Winning methods for forecasting seasonal tourism time series. Int. J. Forecast. 27(3), 853–854 (2011)

    Article  Google Scholar 

  9. Fiorucci, J.A., Pellegrini, T.R., Louzada, F., Petropoulos, F., Koehler, A.B.: Models for optimising the theta method and their relationship to state space models. Int. J. Forecast. 32(4), 1151–1161 (2016)

    Article  Google Scholar 

  10. Flunkert, D.S.V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 770–778 (2016)

    Google Scholar 

  12. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20(1), 5–10 (2004)

    Article  Google Scholar 

  13. Hu, H., Tang, M., Bai, C.: DATSING: data augmented time series forecasting with adversarial domain adaptation. In: CIKM 2020: The 29th ACM International Conference on Information and Knowledge Management, pp. 2061–2064 (2020)

    Google Scholar 

  14. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 2261–2269 (2017)

    Google Scholar 

  15. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, pp. 5244–5254 (2019)

    Google Scholar 

  16. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008)

    MATH  Google Scholar 

  17. Makridakis, S., Hibon, M.: The M3-competition: results, conclusions and implications. Int. J. Forecast. 16(4), 451–476 (2000)

    Article  Google Scholar 

  18. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: results, findings, conclusion and way forward. Int. J. Forecast. 34(4), 802–8081 (2018)

    Article  Google Scholar 

  19. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36(1), 54–74 (2020)

    Article  Google Scholar 

  20. Montori, F., Liao, K., Jayaraman, P.P., Bononi, L., Sellis, T., Georgakopoulos, D.: Classification and annotation of open internet of things datastreams. In: Hacid, H., Cellary, W., Wang, H., Paik, H.-Y., Zhou, R. (eds.) WISE 2018, Part II. LNCS, vol. 11234, pp. 209–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02925-8_15

    Chapter  Google Scholar 

  21. van den Oord, A., et al.: WaveNet: a generative model for raw audio. In: The 9th ISCA Speech Synthesis Workshop, p. 125 (2016)

    Google Scholar 

  22. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In: 8th International Conference on Learning Representations, ICLR 2020 (2020)

    Google Scholar 

  23. Smyl, S.: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. Int. J. Forecast. 36(1), 75–85 (2020)

    Article  Google Scholar 

  24. Smyl, S., Kuber, K.: Data preprocessing and augmentation for multiple short time series forecasting with recurrent neural networks. In: 36th International Symposium on Forecasting (2016)

    Google Scholar 

  25. Spiliotis, E., Assimakopoulos, V., Nikolopoulos, K.: Forecasting with a hybrid method utilizing data smoothing, a variation of the theta method and shrinkage of seasonal factors. Int. J. Prod. Econ. 209, 92–102 (2019)

    Article  Google Scholar 

  26. Sun, H., et al.: Fast anomaly detection in multiple multi-dimensional data streams. In: 2019 IEEE International Conference on Big Data (IEEE BigData), pp. 1218–1223 (2019)

    Google Scholar 

  27. Wang, L., Wang, Z., Qu, H., Liu, S.: Optimal forecast combination based on neural networks for time series forecasting. Appl. Soft Comput. 66, 1–17 (2018)

    Article  Google Scholar 

  28. Wang, Y., Smola, A., Maddix, D.C., Gasthaus, J., Foster, D., Januschowski, T.: Deep factors for forecasting. In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, pp. 6607–6617 (2019)

    Google Scholar 

  29. Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manag. Sci. 6(3), 324–342 (1960)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61832001) and Australian Research Council (No. DP220101420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Tang, M., Liao, K., Shao, J. (2022). A Multi-output Integration Residual Network for Predicting Time Series Data with Diverse Scales. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics