Skip to main content

Source-Free Implicit Semantic Augmentation for Domain Adaptation

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13630))

Included in the following conference series:

  • 1244 Accesses

Abstract

Unsupervised Domain Adaptation (UDA) challenges the problem of alleviating the effect of domain shift. Common UDA methods all require labelled source samples. However, in some real application scenarios, such as Federated Learning, the source data is inaccessible due to data privacy or intellectual property, and only a pre-trained source model and target data without labels are accessible. This challenging problem is called Source-Free Domain Adaptation (SFDA). To address this, we introduce a generation encoder to generate source prototypes depending on the hidden knowledge from the pre-trained source classifier. The generated source prototypes can describe the distribution of source samples in the feature space to a certain extent to solve the Source-Free problem. We also propose Source-Free Implicit Semantic Augmentation (SFISA) for adaptation. SFISA consists of two main stages: source and target class prototypes generation and Source-Free semantic augmentation adaptation based on generated class prototypes. Extensive experiments on the UDA benchmarks demonstrate the efficacy of our generation encoder and augmentation method SFISA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2009). https://doi.org/10.1007/s10994-009-5152-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Choi, J., Kim, T., Kim, C.: Self-ensembling with GAN-based data augmentation for domain adaptation in semantic segmentation. In: ICCV, pp. 6829–6839 (2019)

    Google Scholar 

  3. Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q.: Towards discriminability and diversity: batch nuclear-norm maximization under label insufficient situations. In: CVPR, pp. 3940–3949 (2020)

    Google Scholar 

  4. Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q.: Fast batch nuclear-norm maximization and minimization for robust domain adaptation. CoRR (2021)

    Google Scholar 

  5. Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: CVPR, pp. 12452–12461 (2020)

    Google Scholar 

  6. Dai, S., Cheng, Y., Zhang, Y., Gan, Z., Liu, J., Carin, L.: Contrastively smoothed class alignment for unsupervised domain adaptation. In: ACCV, pp. 268–283 (2020)

    Google Scholar 

  7. Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation. In: ICML, pp. 1180–1189 (2015)

    Google Scholar 

  8. Gu, J., Dong, C.: Interpreting super-resolution networks with local attribution maps. In: CVPR, pp. 9199–9208 (2021)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Huang, J., Guan, D., Xiao, A., Lu, S.: Model adaptation: historical contrastive learning for unsupervised domain adaptation without source data. In: NeurIPS, pp. 3635–3649 (2021)

    Google Scholar 

  11. Jing, L., Vincent, P., LeCun, Y., Tian, Y.: Understanding dimensional collapse in contrastive self-supervised learning. CoRR (2021)

    Google Scholar 

  12. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902 (2019)

    Google Scholar 

  13. Lee, C., Batra, T., Baig, M.H., Ulbricht, D.: Sliced wasserstein discrepancy for unsupervised domain adaptation. In: CVPR, pp. 10285–10295 (2019)

    Google Scholar 

  14. Li, R., Jiao, Q., Cao, W., Wong, H., Wu, S.: Model adaptation: unsupervised domain adaptation without source data. In: CVPR, pp. 9638–9647 (2020)

    Google Scholar 

  15. Li, S., Xie, M., Gong, K., Liu, C.H., Wang, Y., Li, W.: Transferable semantic augmentation for domain adaptation. In: CVPR, pp. 11516–11525 (2021)

    Google Scholar 

  16. Li, X., et al.: PointFlow: flowing semantics through points for aerial image segmentation. In: CVPR, pp. 4217–4226 (2021)

    Google Scholar 

  17. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In: ICML, pp. 6028–6039 (2020)

    Google Scholar 

  18. Liang, J., Hu, D., Feng, J.: Domain adaptation with auxiliary target domain-oriented classifier. In: CVPR, pp. 16632–16642 (2021)

    Google Scholar 

  19. Liu, H., Long, M., Wang, J., Jordan, M.I.: Transferable adversarial training: a general approach to adapting deep classifiers. In: ICML, pp. 4013–4022 (2019)

    Google Scholar 

  20. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105 (2015)

    Google Scholar 

  21. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML, pp. 2208–2217 (2017)

    Google Scholar 

  22. McShane, E.J.: Jensen’s inequality. BAMS, pp. 521–527 (1937)

    Google Scholar 

  23. Mei, H., Wan, T., Eisner, J.: Noise-contrastive estimation for multivariate point processes. In: NeurIPS, pp. 5204–5214 (2020)

    Google Scholar 

  24. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: NeurIPS, pp. 4696–4705 (2019)

    Google Scholar 

  25. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: AAAI, pp. 3934–3941 (2018)

    Google Scholar 

  26. Qiu, Z., et al.: Source-free domain adaptation via avatar prototype generation and adaptation. In: IJCAI, pp. 2921–2927 (2021)

    Google Scholar 

  27. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: ECCV, pp. 213–226 (2010)

    Google Scholar 

  28. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR, pp. 5385–5394 (2017)

    Google Scholar 

  29. Xu, S., et al.: Generative low-bitwidth data free quantization. In: ECCV, pp. 1–17 (2020)

    Google Scholar 

  30. Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Unsupervised domain adaptation without source data by casting a BAIT. CoRR (2020)

    Google Scholar 

  31. Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Exploiting the intrinsic neighborhood structure for source-free domain adaptation. In: NeurIPS, pp. 29393–29405 (2021)

    Google Scholar 

  32. Zhang, Y., Tang, H., Jia, K., Tan, M.: Domain-symmetric networks for adversarial domain adaptation. In: CVPR, pp. 5031–5040 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Zhang, Z. (2022). Source-Free Implicit Semantic Augmentation for Domain Adaptation. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13630. Springer, Cham. https://doi.org/10.1007/978-3-031-20865-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20865-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20864-5

  • Online ISBN: 978-3-031-20865-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics