Abstract
Segmentation of independently moving objects is an important stage in scene comprehension tasks like tracking and recognition. Frame-based cameras employed for dynamic scenes suffer from motion blur and exposure artifacts due to the sampling principle. In contrast, event-based cameras sample visual information based on scene dynamics and have the advantages of microsecond temporal resolution, high dynamic range, and more. Inspired by the complimentary of frame-based cameras and event-based cameras, we propose a cross-domain motion segmentation method, named FusionSeg, for fusing visual signals from frames and events to improve motion segmentation performance. To solve motion segmentation problem on the multi-objects scenario, we use the identification mechanism to embed multiple objects into the same feature space. In addition, to solve the feature matching and propagation problem, we design a long and short-term temporal-spatial attention. Our FusionSeg is evaluated on public datasets and outperforms the state-of-the-art by 4.7% in terms of detection rate. Experiments also demonstrate our method’s robustness in situations with varying motion patterns and numbers of moving objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Charig Yang, H.L., Lu, E., Zisserman, A., Xie, W.: Self-supervised video object segmentation by motion grouping (2021)
Gallego, G., Rebecq, H., Scaramuzza, D.: A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3867–3876 (2018)
Glover, A., Bartolozzi, C.: Robust visual tracking with a freely-moving event camera. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3769–3776. IEEE (2017)
Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)
Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)
Kepple, D.R., Lee, D., Prepsius, C., Isler, V., Park, I.M., Lee, D.D.: Jointly learning visual motion and confidence from local patches in event cameras. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 500–516. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_30
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)
Mitrokhin, A., Fermüller, C., Parameshwara, C., Aloimonos, Y.: Event-based moving object detection and tracking. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)
Mitrokhin, A., Fermüller, C., Parameshwara, C., Aloimonos, Y.: Event-based moving object detection and tracking. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)
Mitrokhin, A., Hua, Z., Fermuller, C., Aloimonos, Y.: Learning visual motion segmentation using event surfaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14414–14423 (2020)
Mitrokhin, A., Ye, C., Fermüller, C., Aloimonos, Y., Delbruck, T.: Ev-imo: Motion segmentation dataset and learning pipeline for event cameras. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6105–6112. IEEE (2019)
Mitrokhin, A., Ye, C., Fermüller, C., Aloimonos, Y., Delbruck, T.: Ev-imo: Motion segmentation dataset and learning pipeline for event cameras. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6105–6112. IEEE (2019)
Nowozin, S.: Optimal decisions from probabilistic models: the intersection-over-union case. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 548–555 (2014)
Parameshwara, C.M., Sanket, N.J., Gupta, A., Fermuller, C., Aloimonos, Y.: Moms with events: Multi-object motion segmentation with monocular event cameras. arXiv preprint arXiv:2006.061582(3), 5 (2020)
Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Contr. Optimization 30(4), 838–855 (1992)
Sanket, N.J., et al.: Evdodgenet: Deep dynamic obstacle dodging with event cameras. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 10651–10657. IEEE (2020)
Stoffregen, T., Gallego, G., Drummond, T., Kleeman, L., Scaramuzza, D.: Event-based motion segmentation by motion compensation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7244–7253 (2019)
Stoffregen, T., Kleeman, L.: Simultaneous optical flow and segmentation (sofas) using dynamic vision sensor. arXiv preprint arXiv:1805.12326 (2018)
Vasco, V., Glover, A., Mueggler, E., Scaramuzza, D., Natale, L., Bartolozzi, C.: Independent motion detection with event-driven cameras. In: 2017 18th International Conference on Advanced Robotics (ICAR), pp. 530–536. IEEE (2017)
Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8741–8750 (2021)
Wertheimer, M.: Untersuchungen zur lehre von der gestalt. Psychologische forschung 1(1), 47–58 (1922)
Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by foreground-background integration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 332–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_20
Yang, Z., Wei, Y., Yang, Y.: Associating objects with transformers for video object segmentation. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Ye, C., Mitrokhin, A., Fermüller, C., Yorke, J.A., Aloimonos, Y.: Unsupervised learning of dense optical flow, depth and egomotion from sparse event data. arXiv preprint arXiv:1809.08625 (2018)
Zhang, J., Shi, F., Wang, J., Liu, Y.: 3D motion segmentation from straight-line optical flow. In: Sebe, N., Liu, Y., Zhuang, Y., Huang, T.S. (eds.) MCAM 2007. LNCS, vol. 4577, pp. 85–94. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73417-8_15
Zhang, J., Yang, X., Fu, Y., Wei, X., Yin, B., Dong, B.: Object tracking by jointly exploiting frame and event domain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13043–13052 (2021)
Zhou, Y., Gallego, G., Lu, X., Liu, S., Shen, S.: Event-based motion segmentation with spatio-temporal graph cuts. IEEE Transactions on Neural Networks and Learning Systems (2021)
Acknowledgements
This work was partially supported by the National Natural Science Foundation of China(No. 91948303).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, L., Liu, Z., Zhang, Y., Yang, S., Shi, D., Zhang, Y. (2022). FusionSeg: Motion Segmentation by Jointly Exploiting Frames and Events. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13631. Springer, Cham. https://doi.org/10.1007/978-3-031-20868-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-20868-3_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20867-6
Online ISBN: 978-3-031-20868-3
eBook Packages: Computer ScienceComputer Science (R0)