Skip to main content

FusionSeg: Motion Segmentation by Jointly Exploiting Frames and Events

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13631))

Included in the following conference series:

  • 1514 Accesses

Abstract

Segmentation of independently moving objects is an important stage in scene comprehension tasks like tracking and recognition. Frame-based cameras employed for dynamic scenes suffer from motion blur and exposure artifacts due to the sampling principle. In contrast, event-based cameras sample visual information based on scene dynamics and have the advantages of microsecond temporal resolution, high dynamic range, and more. Inspired by the complimentary of frame-based cameras and event-based cameras, we propose a cross-domain motion segmentation method, named FusionSeg, for fusing visual signals from frames and events to improve motion segmentation performance. To solve motion segmentation problem on the multi-objects scenario, we use the identification mechanism to embed multiple objects into the same feature space. In addition, to solve the feature matching and propagation problem, we design a long and short-term temporal-spatial attention. Our FusionSeg is evaluated on public datasets and outperforms the state-of-the-art by 4.7% in terms of detection rate. Experiments also demonstrate our method’s robustness in situations with varying motion patterns and numbers of moving objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  2. Charig Yang, H.L., Lu, E., Zisserman, A., Xie, W.: Self-supervised video object segmentation by motion grouping (2021)

    Google Scholar 

  3. Gallego, G., Rebecq, H., Scaramuzza, D.: A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3867–3876 (2018)

    Google Scholar 

  4. Glover, A., Bartolozzi, C.: Robust visual tracking with a freely-moving event camera. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3769–3776. IEEE (2017)

    Google Scholar 

  5. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)

  6. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  7. Kepple, D.R., Lee, D., Prepsius, C., Isler, V., Park, I.M., Lee, D.D.: Jointly learning visual motion and confidence from local patches in event cameras. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 500–516. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_30

    Chapter  Google Scholar 

  8. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  9. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

    Article  MATH  Google Scholar 

  10. Mitrokhin, A., Fermüller, C., Parameshwara, C., Aloimonos, Y.: Event-based moving object detection and tracking. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)

    Google Scholar 

  11. Mitrokhin, A., Fermüller, C., Parameshwara, C., Aloimonos, Y.: Event-based moving object detection and tracking. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)

    Google Scholar 

  12. Mitrokhin, A., Hua, Z., Fermuller, C., Aloimonos, Y.: Learning visual motion segmentation using event surfaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14414–14423 (2020)

    Google Scholar 

  13. Mitrokhin, A., Ye, C., Fermüller, C., Aloimonos, Y., Delbruck, T.: Ev-imo: Motion segmentation dataset and learning pipeline for event cameras. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6105–6112. IEEE (2019)

    Google Scholar 

  14. Mitrokhin, A., Ye, C., Fermüller, C., Aloimonos, Y., Delbruck, T.: Ev-imo: Motion segmentation dataset and learning pipeline for event cameras. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6105–6112. IEEE (2019)

    Google Scholar 

  15. Nowozin, S.: Optimal decisions from probabilistic models: the intersection-over-union case. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 548–555 (2014)

    Google Scholar 

  16. Parameshwara, C.M., Sanket, N.J., Gupta, A., Fermuller, C., Aloimonos, Y.: Moms with events: Multi-object motion segmentation with monocular event cameras. arXiv preprint arXiv:2006.061582(3), 5 (2020)

  17. Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Contr. Optimization 30(4), 838–855 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sanket, N.J., et al.: Evdodgenet: Deep dynamic obstacle dodging with event cameras. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 10651–10657. IEEE (2020)

    Google Scholar 

  19. Stoffregen, T., Gallego, G., Drummond, T., Kleeman, L., Scaramuzza, D.: Event-based motion segmentation by motion compensation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7244–7253 (2019)

    Google Scholar 

  20. Stoffregen, T., Kleeman, L.: Simultaneous optical flow and segmentation (sofas) using dynamic vision sensor. arXiv preprint arXiv:1805.12326 (2018)

  21. Vasco, V., Glover, A., Mueggler, E., Scaramuzza, D., Natale, L., Bartolozzi, C.: Independent motion detection with event-driven cameras. In: 2017 18th International Conference on Advanced Robotics (ICAR), pp. 530–536. IEEE (2017)

    Google Scholar 

  22. Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8741–8750 (2021)

    Google Scholar 

  23. Wertheimer, M.: Untersuchungen zur lehre von der gestalt. Psychologische forschung 1(1), 47–58 (1922)

    Article  Google Scholar 

  24. Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by foreground-background integration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 332–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_20

    Chapter  Google Scholar 

  25. Yang, Z., Wei, Y., Yang, Y.: Associating objects with transformers for video object segmentation. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  26. Ye, C., Mitrokhin, A., Fermüller, C., Yorke, J.A., Aloimonos, Y.: Unsupervised learning of dense optical flow, depth and egomotion from sparse event data. arXiv preprint arXiv:1809.08625 (2018)

  27. Zhang, J., Shi, F., Wang, J., Liu, Y.: 3D motion segmentation from straight-line optical flow. In: Sebe, N., Liu, Y., Zhuang, Y., Huang, T.S. (eds.) MCAM 2007. LNCS, vol. 4577, pp. 85–94. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73417-8_15

    Chapter  Google Scholar 

  28. Zhang, J., Yang, X., Fu, Y., Wei, X., Yin, B., Dong, B.: Object tracking by jointly exploiting frame and event domain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13043–13052 (2021)

    Google Scholar 

  29. Zhou, Y., Gallego, G., Lu, X., Liu, S., Shen, S.: Event-based motion segmentation with spatio-temporal graph cuts. IEEE Transactions on Neural Networks and Learning Systems (2021)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China(No. 91948303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Liu, Z., Zhang, Y., Yang, S., Shi, D., Zhang, Y. (2022). FusionSeg: Motion Segmentation by Jointly Exploiting Frames and Events. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13631. Springer, Cham. https://doi.org/10.1007/978-3-031-20868-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20868-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20867-6

  • Online ISBN: 978-3-031-20868-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics