Skip to main content

Optimization-based Predictive Approach for On-Demand Transportation

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13631))

Included in the following conference series:

  • 1181 Accesses

Abstract

Optimizing the use of vehicles is an essential task for sustainable and effective mobility-on-demand services. In a service, a driver aims to accept maximum customers, while a customer wants to minimize his/her waiting time before getting notifications/served. A service platform always faces a trade-off between the two stakeholders and their key performance indicators (KPIs), i.e., the number of accepted customers and waiting times. This paper addresses the problem of maintaining the best possible KPIs by optimizing the use of facilities with solving Dial-a-Ride problems (DARP). We propose a new framework named FORE-SEAQER (FORecast Enhanced StepwisE Allocator with Quick answER), which predicts whether incoming customers can ride in assigned cars using both real and predicted future requests, and decides whether the platform accepts requests as soon as possible. We experimentally evaluate our framework on real-world service log data from Japan and confirm that the proposed framework reasonably works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, [2] considered such sharing in post-processing, and [10] did not consider sharing, both of which are different from ours.

  2. 2.

    Default penalties are 1500[m]. Weights are implemented like \(100\times 1500\)[m].

  3. 3.

    Since many DARP instances cannot exactly solved in our experiments, the computational upper bound is set to time 600[s].

References

  1. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-sharing: a review. Eur. J. Oper. Res. 223(2), 295–303 (2012)

    Article  MATH  Google Scholar 

  2. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad. Sci. 114(3), 462–467 (2017)

    Article  Google Scholar 

  3. Alonso-Mora, J., Wallar, A., Rus, D.: Predictive routing for autonomous mobility-on-demand systems with ride-sharing. In: Proceedings of IROS2017, pp. 3583–3590 (2017)

    Google Scholar 

  4. Asghari, M., Shahabi, C.: Adapt-pricing: a dynamic and predictive technique for pricing to maximize revenue in ridesharing platforms. In: Proceedings of SIGSPATIAL2018, pp. 189–198 (2018)

    Google Scholar 

  5. Atasoy, B., Ikeda, T., Ben-Akiva, M.E.: Optimizing a flexible mobility on demand system. Transp. Res. Rec. 2563(1), 76–85 (2015)

    Article  Google Scholar 

  6. Balasingam, A., Gopalakrishnan, K., Mittal, R., Arun, V., Saeed, A., Alizadeh, M., Balakrishnan, H., Balakrishnan, H.: Throughput-fairness tradeoffs in mobility platforms. In: Proceedings of MobiSys2021, pp. 363–375 (2021)

    Google Scholar 

  7. Bertsimas, D., Jaillet, P., Martin, S.: Online vehicle routing: The edge of optimization in large-scale applications. Oper. Res. 67(1), 143–162 (2019)

    Article  MathSciNet  Google Scholar 

  8. Clewlow, R.R., Mishra, G.S.: Disruptive transportation: The adoption, utilization, and impacts of ride-hailing in the united states. Technical report, UC Davis (2017)

    Google Scholar 

  9. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann. Oper. Res. 153(1), 29–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hikima, Y., Kohjima, M., Akagi, Y., Kurashima, T., Toda, H.: Price and time optimization for utility-aware taxi dispatching. In: Proceedings of PRICAI 2021, vol. 13031, pp. 370–381 (2021)

    Google Scholar 

  11. Ho, S.C., Szeto, W.Y., Kuo, Y.H., Leung, J.M., Petering, M., Tou, T.W.: A survey of dial-a-ride problems: literature review and recent developments. Transp. Res. Part B: Methodol. 111, 395–421 (2018)

    Article  Google Scholar 

  12. Lei, Z., Qian, X., Ukkusuri, S.V.: Efficient proactive vehicle relocation for on-demand mobility service with recurrent neural networks. Transp. Res. Part C: Emerg. Technol. 117, 102678 (2020)

    Article  Google Scholar 

  13. Liu, C., Sun, J., Jin, H., Ai, M., Li, Q., Zhang, C., Sheng, K., Wu, G., Qie, X., Wang, X.: Spatio-temporal hierarchical adaptive dispatching for ridesharing systems. In: Proceedings of SIGSPATIAL2020, pp. 227–238 (2020)

    Google Scholar 

  14. Lo, J., Morseman, S.: The perfect uberpool: a case study on trade-offs. In: Ethnographic Praxis in Industry Conference Proceedings, pp. 195–223. No. 1, Wiley Online Library (2018)

    Google Scholar 

  15. Peled, I., Lee, K., Jiang, Y., Dauwels, J., Pereira, F.C.: Preserving uncertainty in demand prediction for autonomous mobility services. In: Proceedings of IEEE ITSC2019, pp. 3043–3048 (2019)

    Google Scholar 

  16. Perron, L., Furnon, V.: Or-tools, https://developers.google.com/optimization/

  17. Shah, S., Lowalekar, M., Varakantham, P.: Neural approximate dynamic programming for on-demand ride-pooling. In: Proceedings of AAAI2020, vol. 34(01), pp. 507–515 (2020)

    Google Scholar 

  18. Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., Pavone, M.: Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: a case study in Singapore. In: Road Vehicle Automation, pp. 229–245. Springer (2014)

    Google Scholar 

  19. Yan, A., Howe, B.: Fairness-aware demand prediction for new mobility. In: Proceedings of AAAI 2020, vol. 34 (01), pp. 1079–1087 (2020)

    Google Scholar 

  20. Yang, Y., Shi, Y., Wang, D., Chen, Q., Xu, L., Li, H., Fu, Z., Li, X., Zhang, H.: Improving the information disclosure in mobility-on-demand systems. In: Proceedings of KDD2021, pp. 3854–3864 (2021)

    Google Scholar 

  21. Zhao, B., Xu, P., Shi, Y., Tong, Y., Zhou, Z., Zeng, Y.: Preference-aware task assignment in on-demand taxi dispatching: an online stable matching approach. In: Proceedings of the AAAI 2019, vol. 33 (01), pp. 2245–2252 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Otaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otaki, K., Nishi, T., Shiga, T., Kashiwakura, T. (2022). Optimization-based Predictive Approach for On-Demand Transportation. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13631. Springer, Cham. https://doi.org/10.1007/978-3-031-20868-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20868-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20867-6

  • Online ISBN: 978-3-031-20868-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics