Skip to main content

Self-Supervised Vision Transformer Based Nearest Neighbor Classification for Multi-Source Open-Set Domain Adaptation

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Abstract

Domain adaptation alleviates the performance drop when models are deployed in a target domain. Models assuming a close-set world fail in realistic open-set scenarios where novel classes not present in the source domain exist. Moreover, there are likely to be multiple source domains sharing the same label set but having different data distributions. These real situations make multi-source open-set domain adaptation (MSOSDA) a practical problem but have not been fully explored. The difficulty of MSOSDA is learning a common discriminative feature space among all domains while maximizing the separation between source classes and target-private ones. In this work, we propose a self-supervised vision transformer (ViT) based nearest neighbor classifier for MSOSDA. Our critical insight is to exploit the strong nearest neighbor classification property of self-supervised ViT along with supervised contrastive learning. Straightforward strategies and an adaptive data-driven threshold are adopted to explicitly align among domains and recognize open-set classes in the target domain. Extensive experiments on three popular benchmarks demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bucci, S., Borlino, F.C., Caputo, B., Tommasi, T.: Distance-based hyperspherical classification for multi-source open-set domain adaptation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1119–1128 (2022)

    Google Scholar 

  2. Bucci, S., Loghmani, M.R., Tommasi, T.: On the effectiveness of image rotation for open set domain adaptation. In: Proceedings of the European Conference on Computer Vision, pp. 422–438. Springer, Berlin (2020)

    Google Scholar 

  3. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 4171–4186 (2019)

    Google Scholar 

  6. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  7. Fu, B., Cao, Z., Long, M., Wang, J.: Learning to detect open classes for universal domain adaptation. In: European Conference on Computer Vision, pp. 567–583. Springer, Berlin (2020)

    Google Scholar 

  8. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  9. He, J., Chen, J.N., Liu, S., Kortylewski, A., Yang, C., Bai, Y., Wang, C., Yuille, A.: Transfg: a transformer architecture for fine-grained recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE international Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  13. Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., Krishnan, D.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  14. Kundu, J.N., Venkat, N., Revanur, A., Babu, R.V., et al.: Towards inheritable models for open-set domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12376–12385 (2020)

    Google Scholar 

  15. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  16. Luo, Y., Wang, Z., Huang, Z., Baktashmotlagh, M.: Progressive graph learning for open-set domain adaptation. In: International Conference on Machine Learning, pp. 6468–6478. PMLR (2020)

    Google Scholar 

  17. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  18. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  19. Rakshit, S., Tamboli, D., Meshram, P.S., Banerjee, B., Roig, G., Chaudhuri, S.: Multi-source open-set deep adversarial domain adaptation. In: European Conference on Computer Vision, pp. 735–750. Springer, Berlin (2020)

    Google Scholar 

  20. Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: Imagenet-21k pretraining for the masses. In: Thirty-Fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021)

    Google Scholar 

  21. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Proceedings of the European Conference on Computer Vision, pp. 213–226. Springer, Berlin (2010)

    Google Scholar 

  22. Saito, K., Kim, D., Sclaroff, S., Saenko, K.: Universal domain adaptation through self supervision. Adv. Neural Inf. Process. Syst. 33, 16282–16292 (2020)

    Google Scholar 

  23. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: Proceedings of the European Conference on Computer Vision, pp. 153–168 (2018)

    Google Scholar 

  24. Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  25. Sun, T., Lu, C., Zhang, T., Ling, H.: Safe self-refinement for transformer-based domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  26. Vaze, S., Han, K., Vedaldi, A., Zisserman, A.: Generalized category discovery. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  27. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  28. Xu, T., Chen, W., WANG, P., Wang, F., Li, H., Jin, R.: CDTrans: cross-domain transformer for unsupervised domain adaptation. In: International Conference on Learning Representations (2022)

    Google Scholar 

  29. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2720–2729 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No.61925602, 61732011, 62076179) and the Beijing Natural Science Foundation (Grant No.Z180006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Yang, L., Hu, Q. (2022). Self-Supervised Vision Transformer Based Nearest Neighbor Classification for Multi-Source Open-Set Domain Adaptation. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13631. Springer, Cham. https://doi.org/10.1007/978-3-031-20868-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20868-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20867-6

  • Online ISBN: 978-3-031-20868-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics