Abstract
This paper defines embeddings between state-based and action-based probabilistic logics which can be used to support probabilistic model checking. First, we propose the syntax and semantics of an action-based Probabilistic Computation Tree Logic (APCTL) and an action-based PCTL* (APCTL*) interpreted over action-labeled discrete-time Markov chains (ADTMCs). We show that both these logics are strictly more expressive than the probabilistic variant of Hennessy-Milner logic (prHML). Next, we define an embedding aldl which can be used to construct an APCTL* formula from a PCTL* formula and an embedding sldl from APCTL* formula to PCTL* formula. Similarly, we define the embeddings \(aldl'\) and \(sldl'\) from PCTL to APCTL and APCTL to PCTL, respectively. Finally, we prove that our logical embeddings combined with the model embeddings enable one to minimize, analyze and verify probabilistic models in one domain using state-of-the-art tools and techniques developed for the other domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. J. Comput. Syst. Sci. 68(2), 374–397 (2004)
Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-40903-8_8
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time Markov chains. In: Proceedings of the 8th International Conference on Computer Aided Verification, CAV 1996, New Brunswick, NJ, USA, 31 July–3 August 1996, pp. 269–276 (1996)
Aziz, A., Singhal, V., Balarin, F.: It usually works: The temporal logic of stochastic systems. In: Proceedings of the 7th International Conference on Computer Aided Verification, Liège, Belgium, 3–5 July 1995, pp. 155–165 (1995)
Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: ACP with generative probabilities. Inf. Comput. 121(2), 234–255 (1995)
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_14
Baier, C., Hermanns, H., Katoen, J., Wolf, V.: Bisimulation and simulation relations for Markov chains. Electron. Notes Theor. Comput. Sci. 162, 73–78 (2006)
ter Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: From featured transition systems to modal transition systems with variability constraints. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 344–359. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0_24
ter Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: On the expressiveness of modal transition systems with variability constraints. Sci. Comput. Program. 169, 1–17 (2019)
Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Prob. 31, 59–75 (1994)
Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems - improvements in expressivity and usability. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_2
Cleaveland, R., Iyer, S.P., Narasimha, M.: Probabilistic temporal logics via the modal mu-calculus. Theor. Comput. Sci. 342(2–3), 316–350 (2005)
Das, S., Sharma, A.: Embeddings between state and action labeled probabilistic systems. In: SAC 2021: The 36th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, Republic of Korea, 22–26 March 2021, pp. 1759–1767. ACM (2021)
Das, S., Sharma, A.: State space minimization preserving embeddings for continuous-time Markov chains. In: Ballarini, P., Castel, H., Dimitriou, I., Iacono, M., Phung-Duc, T., Walraevens, J. (eds.) EPEW/ASMTA 2021. LNCS, vol. 13104, pp. 44–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91825-5_3
Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A \(storm\) is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31
Desharnais, J.: Labelled Markov processes. Ph.D. thesis, McGill University (1999)
Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_33
van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)
Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabitilies. In: RTSS, pp. 278–287. IEEE Computer Society (1990)
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994)
Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161 (1985)
Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)
Huth, M., Kwiatkowska, M.Z.: Quantitative analysis and model checking. In: Proceedings of 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, 29 June–2 July 1997, pp. 111–122. IEEE Computer Society (1997)
Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE Computer Society (1991)
Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039071
Katoen, J., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: QEST, pp. 243–244. IEEE Computer Society (2005)
Kemeny, J.G., Snell, J.L.: Denumerable Markov Chains. Springer, New York (1976). https://doi.org/10.1007/978-1-4684-9455-6
Kemeny, J.G., Snell, J.L., et al.: Finite Markov chains, vol. 356. van Nostrand, Princeton (1960)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Larsen, K.G., Mardare, R., Xue, B.: Probabilistic mu-calculus: decidability and complete axiomatization. In: 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016, 13–15 December 2016, Chennai, India. LIPIcs, vol. 65, pp. 25:1–25:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)
Liu, W., Song, L., Wang, J., Zhang, L.: A simple probabilistic extension of modal mu-calculus. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 882–888 (2015)
Lowe, G.: Probabilistic and prioritized models of timed CSP. Theor. Comput. Sci. 138(2), 315–352 (1995)
Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2(2), 93–122 (1984)
Miguel, C., Fernández, A., Vidaller, L.: LOTOS extended with probablistic behaviours. Formal Asp. Comput. 5(3), 253–281 (1993)
Mio, M.: Probabilistic modal mu-calculus with independent product. Log. Methods Comput. Sci. 8(4) (2012)
Nicola, R.D., Fantechi, A., Gnesi, S., Ristori, G.: An action-based framework for verifying logical and behavioural properties of concurrent systems. Comput. Networks ISDN Syst. 25(7), 761–778 (1993)
De Nicola, R., Vaandrager, F.: Action versus state based logics for transition systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2_17
Nicola, R.D., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM 42(2), 458–487 (1995)
Reniers, M.A., Schoren, R., Willemse, T.A.C.: Results on embeddings between state-based and event-based systems. Comput. J. 57(1), 73–92 (2014)
Reniers, M.A., Willemse, T.A.C.: Folk theorems on the correspondence between state-based and event-based systems. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 494–505. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18381-2_41
Sharma, A.: Weighted probabilistic equivalence preserves \(\omega \)-regular properties. In: Schmitt, J.B. (ed.) MMB &DFT 2012. LNCS, vol. 7201, pp. 121–135. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28540-0_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Das, S., Sharma, A. (2022). Embeddings Between State and Action Based Probabilistic Logics. In: Tapia Tarifa, S.L., Proença, J. (eds) Formal Aspects of Component Software. FACS 2022. Lecture Notes in Computer Science, vol 13712. Springer, Cham. https://doi.org/10.1007/978-3-031-20872-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-20872-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20871-3
Online ISBN: 978-3-031-20872-0
eBook Packages: Computer ScienceComputer Science (R0)