Skip to main content

Efficient Truss Computation for Large Hypergraphs

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2022 (WISE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13724))

Included in the following conference series:

Abstract

Cohesive subgraph mining has been applied in many areas, including social networks, cooperation networks, and biological networks. The k-truss of a graph is the maximal subgraph in which each edge is contained in at least k triangles. Existing k-truss models are defined solely in pairwise graphs and are hence unsuitable for hypergraphs. In this paper, we propose a novel problem, named \((k,\alpha ,\beta )\)-truss computation in hypergraphs. We then propose two hypergraph conversions. The first converts a hypergraph into a pairwise graph, while the second converts it into a projected graph. We further propose two algorithms for computing \((k,\alpha ,\beta )\)-truss in hypergraphs based on these two types of conversions. Experiments show that our \((k,\alpha ,\beta )\)-truss model is effective and our algorithms are efficient in large hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All datasets are obtained from https://www.cs.cornell.edu/~arb/data/.

  2. 2.

    https://askubuntu.com/.

References

  1. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. Comput. Sci. 1(6), 34–37 (2003)

    Google Scholar 

  2. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD, pp. 205–216. ACM (2013)

    Google Scholar 

  3. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. national security agency technical report (2008)

    Google Scholar 

  4. Fang, Y., Yang, Y., Zhang, W., Lin, X., Cao, X.: Effective and efficient community search over large heterogeneous information networks. Proc. VLDB Endow. 13(6), 854–867 (2020)

    Article  Google Scholar 

  5. Hu, A.L., Chan, K.C.: Utilizing both topological and attribute information for protein complex identification in PPI networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(3), 780–792 (2013)

    Article  Google Scholar 

  6. Hu, S., Wu, X., Chan, T.H.: Maintaining densest subsets efficiently in evolving hypergraphs. In: CIKM, pp. 929–938. ACM (2017)

    Google Scholar 

  7. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. In: SIGMOD, pp. 1311–1322. ACM (2014)

    Google Scholar 

  8. Lee, G., Choe, M., Shin, K.: How do hyperedges overlap in real-world hypergraphs? - patterns, measures, and generators. In: WWW, pp. 3396–3407 (2021)

    Google Scholar 

  9. Lee, G., Ko, J., Shin, K.: Hypergraph motifs: concepts, algorithms, and discoveries. Proc. VLDB Endow. 13(11), 2256–2269 (2020)

    Article  Google Scholar 

  10. Leng, M., Sun, L.Y., Bian, J.N., Yu-Chun, M.A.: An o(m) algorithm for cores decomposition of undirected hypergraph. J. Chin. Comput. Syst. 34, 2568–2573 (2013)

    Google Scholar 

  11. Liu, H., Latecki, L.J., Yan, S.: Dense subgraph partition of positive hypergraphs. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 541–554 (2015)

    Article  Google Scholar 

  12. Liu, Q., Zhao, M., Huang, X., Xu, J., Gao, Y.: Truss-based community search over large directed graphs. In: SIGMOD, pp. 2183–2197. ACM (2020)

    Google Scholar 

  13. Luo, Q., Yu, D., Cai, Z., Lin, X., Cheng, X.: Hypercore maintenance in dynamic hypergraphs. In: ICDE, pp. 2051–2056 (2021)

    Google Scholar 

  14. Palla, G., Deranyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814 (2005)

    Article  Google Scholar 

  15. Pu, L., Faltings, B.: Hypergraph learning with hyperedge expansion. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7523, pp. 410–425. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33460-3_32

    Chapter  Google Scholar 

  16. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  17. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: SIGKDD, pp. 939–948 (2010)

    Google Scholar 

  18. Sun, B., Chan, T.H., Sozio, M.: Fully dynamic approximate k-core decomposition in hypergraphs. ACM Trans. Knowl. Discov. Data 14(4), 39:1–39:21 (2020)

    Google Scholar 

  19. Wang, J., Cheng, J.: Truss decomposition in massive networks. Proc. VLDB Endow. 5(9), 812–823 (2012)

    Article  Google Scholar 

  20. Wang, K., Zhang, W., Lin, X., Zhang, Y., Qin, L., Zhang, Y.: Efficient and effective community search on large-scale bipartite graphs. In: ICDE, pp. 85–96 (2021)

    Google Scholar 

  21. Yang, Y., Fang, Y., Lin, X., Zhang, W.: Effective and efficient truss computation over large heterogeneous information networks. In: ICDE, pp. 901–912. IEEE (2020)

    Google Scholar 

  22. Yoon, S., Song, H., Shin, K., Yi, Y.: How much and when do we need higher-order informationin hypergraphs? A case study on hyperedge prediction. In: WWW, pp. 2627–2633 (2020)

    Google Scholar 

  23. Zou, Z.: Bitruss decomposition of bipartite graphs. In: Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, X.S., Xiong, H. (eds.) DASFAA 2016. LNCS, vol. 9643, pp. 218–233. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32049-6_14

    Chapter  Google Scholar 

Download references

Acknowledgements

The work was supported by National Key Research and Development Program of China (Grant No. 2020YFB1707900, No. 2021YFB2700700), National Natural Science Foundation of China Grant No. 62072035, Open Research Projects of Zhejiang Lab (Grant No. 2020KE0AB04), CCF-Huawei Database System Innovation Research Plan Grant No. CCF-HuaweiDBIR2021007B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Chen, Y., Zhang, Z., Qiao, P., Wang, G. (2022). Efficient Truss Computation for Large Hypergraphs. In: Chbeir, R., Huang, H., Silvestri, F., Manolopoulos, Y., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2022. WISE 2022. Lecture Notes in Computer Science, vol 13724. Springer, Cham. https://doi.org/10.1007/978-3-031-20891-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20891-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20890-4

  • Online ISBN: 978-3-031-20891-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics