Skip to main content

Complex Question Answering Over Temporal Knowledge Graphs

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2022 (WISE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13724))

Included in the following conference series:

  • 1595 Accesses

Abstract

A temporal knowledge graph (TKG) comprises facts aligned with timestamps. Question answering over TKGs (TKGQA) finds an entity or timestamp to answer a question with certain temporal constraints. Current studies assume that the questions are fully annotated before being fed into the system, and treat question answering as a link prediction task. Moreover, the process of choosing answers is not interpretable due to the implicit reasoning in the latent space. In this paper, we propose a semantic parsing based method, namely AE-TQ, which leverages abstract meaning representation (AMR) for understanding complex questions, and produces question-oriented semantic information for explicit and effective temporal reasoning. We evaluate our method on CronQuestions, the largest known TKGQA dataset, and the experiment results demonstrate that AE-TQ empirically outperforms several competing methods in various settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/hanxiao/bert-as-service.

References

  1. Banarescu, L., et al.: Abstract meaning representation for sembanking. In: LAW-ID@ACL, pp. 178–186 (2013)

    Google Scholar 

  2. Bevilacqua, M., Blloshmi, R., Navigli, R.: One SPRING to rule them both: symmetric AMR semantic parsing and generation without a complex pipeline. In: AAAI, pp. 12564–12573 (2021)

    Google Scholar 

  3. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  4. Févry, T., Soares, L.B., FitzGerald, N., Choi, E., Kwiatkowski, T.: Entities as experts: sparse memory access with entity supervision. In: EMNLP, pp. 4937–4951 (2020)

    Google Scholar 

  5. García-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: EMNLP, pp. 4816–4821 (2018)

    Google Scholar 

  6. Goodman, M.W.: Penman: an open-source library and tool for AMR graphs. In: ACL, pp. 312–319 (2020)

    Google Scholar 

  7. Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spaCy: industrial-strength natural language processing in python (2020)

    Google Scholar 

  8. Jia, Z., Abujabal, A., Roy, R.S., Strötgen, J., Weikum, G.: Tempquestions: a benchmark for temporal question answering. In: WWW, pp. 1057–1062 (2018)

    Google Scholar 

  9. Jia, Z., Abujabal, A., Roy, R.S., Strötgen, J., Weikum, G.: TEQUILA: temporal question answering over knowledge bases. In: CIKM, pp. 1807–1810 (2018)

    Google Scholar 

  10. Jia, Z., Pramanik, S., Roy, R.S., Weikum, G.: Complex temporal question answering on knowledge graphs. In: CIKM, pp. 792–802 (2021)

    Google Scholar 

  11. Kingsbury, P.R., Palmer, M.: From treebank to propbank. In: LREC (2002)

    Google Scholar 

  12. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base completion. In: ICLR (2020)

    Google Scholar 

  13. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: WWW, pp. 1771–1776 (2018)

    Google Scholar 

  14. Liu, Y., Hua, W., Zhou, X.: Temporal knowledge extraction from large-scale text corpus. World Wide Web 24(1), 135–156 (2021). https://doi.org/10.1007/s11280-020-00836-5

    Article  Google Scholar 

  15. Mavromatis, C., et al.: Tempoqr: temporal question reasoning over knowledge graphs. In: AAAI, pp. 5825–5833(2022)

    Google Scholar 

  16. Portisch, J., Heist, N., Paulheim, H.: Knowledge graph embedding for data mining vs. knowledge graph embedding for link prediction - two sides of the same coin? Semantic Web 13(3), 399–422 (2022)

    Google Scholar 

  17. Saxena, A., Chakrabarti, S., Talukdar, P.P.: Question answering over temporal knowledge graphs. In: ACL/IJCNLP, pp. 6663–6676 (2021)

    Google Scholar 

  18. Saxena, A., Tripathi, A., Talukdar, P.P.: Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In: ACL, pp. 4498–4507 (2020)

    Google Scholar 

  19. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_22

    Chapter  Google Scholar 

  20. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202201020131), GuangDong Basic and Applied Basic Research Foundation 2019B1515120048, and NSFC under grants No.61872446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhi Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, S., Liao, J., Yang, S., Zhao, X., Lin, X. (2022). Complex Question Answering Over Temporal Knowledge Graphs. In: Chbeir, R., Huang, H., Silvestri, F., Manolopoulos, Y., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2022. WISE 2022. Lecture Notes in Computer Science, vol 13724. Springer, Cham. https://doi.org/10.1007/978-3-031-20891-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20891-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20890-4

  • Online ISBN: 978-3-031-20891-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics