Abstract
A temporal knowledge graph (TKG) comprises facts aligned with timestamps. Question answering over TKGs (TKGQA) finds an entity or timestamp to answer a question with certain temporal constraints. Current studies assume that the questions are fully annotated before being fed into the system, and treat question answering as a link prediction task. Moreover, the process of choosing answers is not interpretable due to the implicit reasoning in the latent space. In this paper, we propose a semantic parsing based method, namely AE-TQ, which leverages abstract meaning representation (AMR) for understanding complex questions, and produces question-oriented semantic information for explicit and effective temporal reasoning. We evaluate our method on CronQuestions, the largest known TKGQA dataset, and the experiment results demonstrate that AE-TQ empirically outperforms several competing methods in various settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banarescu, L., et al.: Abstract meaning representation for sembanking. In: LAW-ID@ACL, pp. 178–186 (2013)
Bevilacqua, M., Blloshmi, R., Navigli, R.: One SPRING to rule them both: symmetric AMR semantic parsing and generation without a complex pipeline. In: AAAI, pp. 12564–12573 (2021)
Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
Févry, T., Soares, L.B., FitzGerald, N., Choi, E., Kwiatkowski, T.: Entities as experts: sparse memory access with entity supervision. In: EMNLP, pp. 4937–4951 (2020)
García-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: EMNLP, pp. 4816–4821 (2018)
Goodman, M.W.: Penman: an open-source library and tool for AMR graphs. In: ACL, pp. 312–319 (2020)
Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spaCy: industrial-strength natural language processing in python (2020)
Jia, Z., Abujabal, A., Roy, R.S., Strötgen, J., Weikum, G.: Tempquestions: a benchmark for temporal question answering. In: WWW, pp. 1057–1062 (2018)
Jia, Z., Abujabal, A., Roy, R.S., Strötgen, J., Weikum, G.: TEQUILA: temporal question answering over knowledge bases. In: CIKM, pp. 1807–1810 (2018)
Jia, Z., Pramanik, S., Roy, R.S., Weikum, G.: Complex temporal question answering on knowledge graphs. In: CIKM, pp. 792–802 (2021)
Kingsbury, P.R., Palmer, M.: From treebank to propbank. In: LREC (2002)
Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base completion. In: ICLR (2020)
Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: WWW, pp. 1771–1776 (2018)
Liu, Y., Hua, W., Zhou, X.: Temporal knowledge extraction from large-scale text corpus. World Wide Web 24(1), 135–156 (2021). https://doi.org/10.1007/s11280-020-00836-5
Mavromatis, C., et al.: Tempoqr: temporal question reasoning over knowledge graphs. In: AAAI, pp. 5825–5833(2022)
Portisch, J., Heist, N., Paulheim, H.: Knowledge graph embedding for data mining vs. knowledge graph embedding for link prediction - two sides of the same coin? Semantic Web 13(3), 399–422 (2022)
Saxena, A., Chakrabarti, S., Talukdar, P.P.: Question answering over temporal knowledge graphs. In: ACL/IJCNLP, pp. 6663–6676 (2021)
Saxena, A., Tripathi, A., Talukdar, P.P.: Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In: ACL, pp. 4498–4507 (2020)
Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_22
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)
Acknowledgements
This work is supported by Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202201020131), GuangDong Basic and Applied Basic Research Foundation 2019B1515120048, and NSFC under grants No.61872446.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Long, S., Liao, J., Yang, S., Zhao, X., Lin, X. (2022). Complex Question Answering Over Temporal Knowledge Graphs. In: Chbeir, R., Huang, H., Silvestri, F., Manolopoulos, Y., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2022. WISE 2022. Lecture Notes in Computer Science, vol 13724. Springer, Cham. https://doi.org/10.1007/978-3-031-20891-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-20891-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20890-4
Online ISBN: 978-3-031-20891-1
eBook Packages: Computer ScienceComputer Science (R0)