Skip to main content

Reinforcement-Mining: Protecting Reward in Selfish Mining

  • Conference paper
  • First Online:
Provable and Practical Security (ProvSec 2022)

Abstract

Selfish mining is notorious for receiving additional rewards disproportionate to the attacker’s mining power in Proof-of-Work (PoW) consensus-based blockchain, e.g., Bitcoin. Unfair reward distribution may cause partial honest miners to quit blockchain mining, which will seriously weaken the security of the PoW blockchain since the security is guaranteed by strong mining power. Various efforts have been proposed to alleviate this problem, but are generally expensive to implement, e.g., upgrading the blockchain backbone protocol. In this work, we propose a method, named Reinforcement-Mining, to protect honest miners’ mining rewards to mitigate the harm of selfish mining. The key insight of Reinforcement-Mining is to employ a deep reinforcement learning framework to choose the optimal policy for honest miners to protect their rewards when the blockchain suffers from a selfish mining attack. Experiments on mining reward and chain quality property are conducted respectively. The analysis of experiment results demonstrates that our approach moderates the unfair reward distribution of selfish mining and improves the chain quality property of the blockchain. The proposed method may be still far from practical application, however, it provides a new perspective for defense against selfish mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_11

    Chapter  Google Scholar 

  2. Bonneau, J., Felten, E.W., Goldfeder, S., Kroll, J.A., Narayanan, A.: Why buy when you can rent? bribery attacks on bitcoin consensus (2016)

    Google Scholar 

  3. Chicarino, V., Albuquerque, C., Jesus, E., Rocha, A.: On the detection of selfish mining and stalker attacks in blockchain networks. Ann. Telecommun. 75(3), 143–152 (2020). https://doi.org/10.1007/s12243-019-00746-2

    Article  Google Scholar 

  4. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_28

    Chapter  Google Scholar 

  5. Feng, C., Niu, J.: Selfish mining in ethereum. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1306–1316. IEEE (2019)

    Google Scholar 

  6. Gao, S., Li, Z., Peng, Z., Xiao, B.: Power adjusting and bribery racing: Novel mining attacks in the bitcoin system. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 833–850 (2019)

    Google Scholar 

  7. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  8. Graf, M., Rausch, D., Ronge, V., Egger, C., Küsters, R., Schröder, D.: A security framework for distributed ledgers. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1043–1064 (2021)

    Google Scholar 

  9. Guo, J., Wang, Y., An, H., Liu, M., Zhang, Y., Li, C.: IIDQN: an incentive improved DQN algorithm in EBSN recommender system. Secur. Commun. Netw. 2022 (2022)

    Google Scholar 

  10. Heilman, E.: One weird trick to stop selfish miners: fresh bitcoins, a solution for the honest miner (poster abstract). In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 161–162. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_12

    Chapter  Google Scholar 

  11. Hou, C., et al.: SquirRL: automating attack analysis on blockchain incentive mechanisms with deep reinforcement learning. arXiv preprint arXiv:1912.01798 (2019)

  12. Liu, H., Ruan, N., Du, R., Jia, W.: On the strategy and behavior of bitcoin mining with n-attackers. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 357–368 (2018)

    Google Scholar 

  13. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol. 32 (2019)

    Google Scholar 

  14. Ritz, F., Zugenmaier, A.: The impact of uncle rewards on selfish mining in ethereum. In: 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS &PW), pp. 50–57. IEEE (2018)

    Google Scholar 

  15. Saad, M., Anwar, A., Ravi, S., Mohaisen, D.: Revisiting nakamoto consensus in asynchronous networks: a comprehensive analysis of bitcoin safety and chainquality. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 988–1005 (2021)

    Google Scholar 

  16. Saad, M., Chen, S., Mohaisen, D.: Syncattack: double-spending in bitcoin without mining power. In: 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1668–1685 (2021)

    Google Scholar 

  17. Saad, M., Njilla, L., Kamhoua, C., Mohaisen, A.: Countering selfish mining in blockchains. In: 2019 International Conference on Computing, Networking and Communications (ICNC), pp. 360–364. IEEE (2019)

    Google Scholar 

  18. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_30

    Chapter  Google Scholar 

  19. Solat, S., Potop-Butucaru, M.: Brief announcement: ZeroBlock: timestamp-free prevention of block-withholding attack in bitcoin. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 356–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_25

    Chapter  Google Scholar 

  20. Wang, Z., Lv, Q., Lu, Z., Wang, Y., Yue, S.: ForkDec: accurate detection for selfish mining attacks. Secur. Commun. Netw. 2021 (2021)

    Google Scholar 

  21. Zhang, M., Li, Y., Li, J., Kong, C., Deng, X.: Insightful mining equilibria. arXiv preprint arXiv:2202.08466 (2022)

  22. Zhang, R., Preneel, B.: Publish or perish: a backward-compatible defense against selfish mining in bitcoin. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 277–292. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Susilo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Susilo, W., Guo, J., Wang, Y., Zhao, M. (2022). Reinforcement-Mining: Protecting Reward in Selfish Mining. In: Ge, C., Guo, F. (eds) Provable and Practical Security. ProvSec 2022. Lecture Notes in Computer Science, vol 13600. Springer, Cham. https://doi.org/10.1007/978-3-031-20917-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20917-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20916-1

  • Online ISBN: 978-3-031-20917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics