Abstract
Selfish mining is notorious for receiving additional rewards disproportionate to the attacker’s mining power in Proof-of-Work (PoW) consensus-based blockchain, e.g., Bitcoin. Unfair reward distribution may cause partial honest miners to quit blockchain mining, which will seriously weaken the security of the PoW blockchain since the security is guaranteed by strong mining power. Various efforts have been proposed to alleviate this problem, but are generally expensive to implement, e.g., upgrading the blockchain backbone protocol. In this work, we propose a method, named Reinforcement-Mining, to protect honest miners’ mining rewards to mitigate the harm of selfish mining. The key insight of Reinforcement-Mining is to employ a deep reinforcement learning framework to choose the optimal policy for honest miners to protect their rewards when the blockchain suffers from a selfish mining attack. Experiments on mining reward and chain quality property are conducted respectively. The analysis of experiment results demonstrates that our approach moderates the unfair reward distribution of selfish mining and improves the chain quality property of the blockchain. The proposed method may be still far from practical application, however, it provides a new perspective for defense against selfish mining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_11
Bonneau, J., Felten, E.W., Goldfeder, S., Kroll, J.A., Narayanan, A.: Why buy when you can rent? bribery attacks on bitcoin consensus (2016)
Chicarino, V., Albuquerque, C., Jesus, E., Rocha, A.: On the detection of selfish mining and stalker attacks in blockchain networks. Ann. Telecommun. 75(3), 143–152 (2020). https://doi.org/10.1007/s12243-019-00746-2
Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_28
Feng, C., Niu, J.: Selfish mining in ethereum. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1306–1316. IEEE (2019)
Gao, S., Li, Z., Peng, Z., Xiao, B.: Power adjusting and bribery racing: Novel mining attacks in the bitcoin system. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 833–850 (2019)
Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10
Graf, M., Rausch, D., Ronge, V., Egger, C., Küsters, R., Schröder, D.: A security framework for distributed ledgers. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1043–1064 (2021)
Guo, J., Wang, Y., An, H., Liu, M., Zhang, Y., Li, C.: IIDQN: an incentive improved DQN algorithm in EBSN recommender system. Secur. Commun. Netw. 2022 (2022)
Heilman, E.: One weird trick to stop selfish miners: fresh bitcoins, a solution for the honest miner (poster abstract). In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 161–162. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_12
Hou, C., et al.: SquirRL: automating attack analysis on blockchain incentive mechanisms with deep reinforcement learning. arXiv preprint arXiv:1912.01798 (2019)
Liu, H., Ruan, N., Du, R., Jia, W.: On the strategy and behavior of bitcoin mining with n-attackers. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 357–368 (2018)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol. 32 (2019)
Ritz, F., Zugenmaier, A.: The impact of uncle rewards on selfish mining in ethereum. In: 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS &PW), pp. 50–57. IEEE (2018)
Saad, M., Anwar, A., Ravi, S., Mohaisen, D.: Revisiting nakamoto consensus in asynchronous networks: a comprehensive analysis of bitcoin safety and chainquality. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 988–1005 (2021)
Saad, M., Chen, S., Mohaisen, D.: Syncattack: double-spending in bitcoin without mining power. In: 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1668–1685 (2021)
Saad, M., Njilla, L., Kamhoua, C., Mohaisen, A.: Countering selfish mining in blockchains. In: 2019 International Conference on Computing, Networking and Communications (ICNC), pp. 360–364. IEEE (2019)
Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_30
Solat, S., Potop-Butucaru, M.: Brief announcement: ZeroBlock: timestamp-free prevention of block-withholding attack in bitcoin. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 356–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_25
Wang, Z., Lv, Q., Lu, Z., Wang, Y., Yue, S.: ForkDec: accurate detection for selfish mining attacks. Secur. Commun. Netw. 2021 (2021)
Zhang, M., Li, Y., Li, J., Kong, C., Deng, X.: Insightful mining equilibria. arXiv preprint arXiv:2202.08466 (2022)
Zhang, R., Preneel, B.: Publish or perish: a backward-compatible defense against selfish mining in bitcoin. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 277–292. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_16
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Z., Susilo, W., Guo, J., Wang, Y., Zhao, M. (2022). Reinforcement-Mining: Protecting Reward in Selfish Mining. In: Ge, C., Guo, F. (eds) Provable and Practical Security. ProvSec 2022. Lecture Notes in Computer Science, vol 13600. Springer, Cham. https://doi.org/10.1007/978-3-031-20917-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-20917-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20916-1
Online ISBN: 978-3-031-20917-8
eBook Packages: Computer ScienceComputer Science (R0)