Skip to main content

Practical Non-malleable Codes from Symmetric-Key Primitives in 2-Split-State Model

  • Conference paper
  • First Online:
Provable and Practical Security (ProvSec 2022)

Abstract

Non-malleable codes (NMC) are introduced as a relaxation of error correcting codes to protect message against tampering attacks. It is guaranteed that a message encoded with non-malleable codes, if tampered by some classes of tampering functions, produces either completely unrelated message or the original message, when tampering has no effect. Kiayias et al. [19] have proposed a NMC construction based on leakage resilient authenticated encryption (AE) and 1-more extractable hash function. They obtain a codeword of length \(|m|+18n\) in common reference string (CRS) model. In this paper, we propose a construction of computationally secure non-malleable code in 2-split-state model from an authenticated encryption scheme with close to optimal codeword length \(|m|+2n\). Specifically we use an AE based on triple M-DES and CBC-MAC. The security of our NMC reduces to related-key and pseudorandom permutation security of the underlying block cipher under leakage, and also to the unforgeability of the CBC-MAC under leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

    Chapter  Google Scholar 

  3. Joan, D., Vincent, R.: The Design of Rijndael. Springer, New York (2002). https://doi.org/10.1007/978-3-662-60769-5

    Book  MATH  Google Scholar 

  4. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_2

    Chapter  Google Scholar 

  5. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31

    Chapter  Google Scholar 

  6. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6

    Chapter  Google Scholar 

  7. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  8. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_2

    Chapter  Google Scholar 

  9. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C. (ed.) ICS 2010, Beijing, China, 5–7 January 2010, pp. 434–452. Tsinghua University Press, Beijing (2010)

    Google Scholar 

  10. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_26

    Chapter  Google Scholar 

  11. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_21

    Chapter  Google Scholar 

  12. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_30

    Chapter  Google Scholar 

  13. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_21

    Chapter  Google Scholar 

  14. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_14

    Chapter  Google Scholar 

  15. Damgård, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_8

    Chapter  Google Scholar 

  16. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC, pp. 774–783 (2014)

    Google Scholar 

  17. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 459–468. ACM (2015)

    Google Scholar 

  18. Pereira, O., Standaert, F.X., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 96–108. ACM Press (2015)

    Google Scholar 

  19. Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-more extractable hash functions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1317–1328. ACM Press (2016)

    Google Scholar 

  20. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_15

    Chapter  Google Scholar 

  21. Fehr, S., Karpman, P., Mennink, B.: Short non-malleable codes from related-key secure block ciphers. IACR Trans. Symm. Cryptol., 336–352 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anit Kumar Ghosal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosal, A.K., Ghosh, S., Roychowdhury, D. (2022). Practical Non-malleable Codes from Symmetric-Key Primitives in 2-Split-State Model. In: Ge, C., Guo, F. (eds) Provable and Practical Security. ProvSec 2022. Lecture Notes in Computer Science, vol 13600. Springer, Cham. https://doi.org/10.1007/978-3-031-20917-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20917-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20916-1

  • Online ISBN: 978-3-031-20917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics