Skip to main content

Lattice-Based Public Key Cryptosystems Invoking Linear Mapping Mask

  • Conference paper
  • First Online:
Provable and Practical Security (ProvSec 2022)

Abstract

In ProvSec 2018, Yasuda proposed a multivariate public key cryptosystem using the pq-method, whose security is based on the constrained MQ problem. Afterward, in SCIS 2020, he improved the cryptosystem by adding noise elements and simultaneously considered the cryptanalysis using the NTRU method. This improved cryptosystem is the first one combining lattice and multivariate public-key cryptosystem. In this paper, we propose three variants of Yasuda’s cryptosystem. The main improvement is that we invite the linear structures instead of the multivariate quadratic polynomials. In particular, we simplify the procedure in key generation mechanism by using a linear mapping mask which produces resistance against the key-recovery attack. Furthermore, we propose a ring version that is quite efficient compared to the standard versions. Finally, we adopt the ring-LWE method instead of the original NTRU method to give a more promising cryptanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. US Department of Commerce, National Institute of Standards and Technology. Post-Quantum Cryptography (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/

  2. PQC Standardization Process: Fourth Round Candidate Announcement (2022). https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

  3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, pp. 601–610 (2001)

    Google Scholar 

  4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: USENIX Security Symposium, pp. 327–343 (2016)

    Google Scholar 

  6. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_30

    Chapter  Google Scholar 

  7. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5_21

    Chapter  Google Scholar 

  8. Chen, Y.: Lattice reduction and concrete security of fully homomorphic encryption. Department Informatique, ENS, Paris, France, Ph.D. thesis (2013)

    Google Scholar 

  9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

    Chapter  Google Scholar 

  10. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3

    Chapter  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H Freeman, USA (1979)

    MATH  Google Scholar 

  12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  13. Ikematsu, Y., Perlner, R., Smith-Tone, D., Takagi, T., Vates, J.: HFERP - a new multivariate encryption scheme. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 396–416. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_19

    Chapter  Google Scholar 

  14. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  15. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_39

    Chapter  Google Scholar 

  16. Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_20

    Chapter  Google Scholar 

  17. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)

    Google Scholar 

  18. Schnorr, C., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994). https://doi.org/10.1007/BF01581144

    Article  MathSciNet  MATH  Google Scholar 

  19. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, Proceeding, pp. 124–134 (1994)

    Google Scholar 

  20. Shoup, V.: NTL, a library for doing number theory (2017). http://www.shoup.net/ntl/

  21. Szepieniec, A., Ding, J., Preneel, B.: Extension field cancellation: a new central trapdoor for multivariate quadratic systems. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 182–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_12

    Chapter  Google Scholar 

  22. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_16

    Chapter  Google Scholar 

  23. Wang, W., Wang, Y., Takayasu, A., Takagi, T.: Estimated cost for solving generalized learning with errors problem via embedding techniques. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 87–103. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97916-8_6

    Chapter  Google Scholar 

  24. Wang, Y., Aono, Y., Takagi, T.: Hardness evaluation for search LWE problem using progressive BKZ simulator. IEICE Trans. 101–A(12), 2162–2170 (2018)

    Article  Google Scholar 

  25. Wang, Y., Takagi, T.: Studying lattice reduction algorithms improved by quick reordering technique. Int. J. Inf. Sec. 20(2), 257–268 (2021). https://doi.org/10.1007/s10207-020-00501-y

    Article  Google Scholar 

  26. Yamamura, K., Wang, Y., Fujisaki, E.: Improved lattice enumeration algorithms by primal and dual reordering methods. In: Park, J.H., Seo, S. (eds.) Information Security and Cryptology - ICISC 2021–24th International Conference, Seoul, South Korea, December 2021, Revised Selected Papers, volume 13218 of Lecture Notes in Computer Science, pp. 159–174. Springer (2021). https://doi.org/10.1007/978-3-031-08896-4_8

  27. Yasuda, T.: Multivariate encryption schemes based on the constrained MQ problem. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 129–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_8

    Chapter  Google Scholar 

  28. Yasuda, T.: Multivariate public key system using noise. In: SCIS 2020 (2020)

    Google Scholar 

  29. Yasuda, T., Wang, Y., Takagi, T.: Multivariate encryption schemes based on polynomial equations over real numbers. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 402–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_22

    Chapter  Google Scholar 

Download references

Acknowledgement

We thank Dr. Atsushi Takayasu for his helpful comments on this work. This work was supported by JSPS KAKENHI Grant Number JP20K23322, JP21K11751, JP19K20266, JP20K03741, Japan. This work is based on the discussions at FY2019 IMI Joint Usage Research Program Short-term Joint Research “New Development of Constructing Next-Generation Cryptography via Unified Approaches of Mathematics Theory, Computation and Cryptology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuntao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Ikematsu, Y., Yasuda, T. (2022). Lattice-Based Public Key Cryptosystems Invoking Linear Mapping Mask. In: Ge, C., Guo, F. (eds) Provable and Practical Security. ProvSec 2022. Lecture Notes in Computer Science, vol 13600. Springer, Cham. https://doi.org/10.1007/978-3-031-20917-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20917-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20916-1

  • Online ISBN: 978-3-031-20917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics