Abstract
In ProvSec 2018, Yasuda proposed a multivariate public key cryptosystem using the pq-method, whose security is based on the constrained MQ problem. Afterward, in SCIS 2020, he improved the cryptosystem by adding noise elements and simultaneously considered the cryptanalysis using the NTRU method. This improved cryptosystem is the first one combining lattice and multivariate public-key cryptosystem. In this paper, we propose three variants of Yasuda’s cryptosystem. The main improvement is that we invite the linear structures instead of the multivariate quadratic polynomials. In particular, we simplify the procedure in key generation mechanism by using a linear mapping mask which produces resistance against the key-recovery attack. Furthermore, we propose a ring version that is quite efficient compared to the standard versions. Finally, we adopt the ring-LWE method instead of the original NTRU method to give a more promising cryptanalysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
US Department of Commerce, National Institute of Standards and Technology. Post-Quantum Cryptography (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
PQC Standardization Process: Fourth Round Candidate Announcement (2022). https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, pp. 601–610 (2001)
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)
Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: USENIX Security Symposium, pp. 327–343 (2016)
Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_30
Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5_21
Chen, Y.: Lattice reduction and concrete security of fully homomorphic encryption. Department Informatique, ENS, Paris, France, Ph.D. thesis (2013)
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H Freeman, USA (1979)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Ikematsu, Y., Perlner, R., Smith-Tone, D., Takagi, T., Vates, J.: HFERP - a new multivariate encryption scheme. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 396–416. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_19
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_39
Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_20
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)
Schnorr, C., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994). https://doi.org/10.1007/BF01581144
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, Proceeding, pp. 124–134 (1994)
Shoup, V.: NTL, a library for doing number theory (2017). http://www.shoup.net/ntl/
Szepieniec, A., Ding, J., Preneel, B.: Extension field cancellation: a new central trapdoor for multivariate quadratic systems. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 182–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_12
Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_16
Wang, W., Wang, Y., Takayasu, A., Takagi, T.: Estimated cost for solving generalized learning with errors problem via embedding techniques. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 87–103. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97916-8_6
Wang, Y., Aono, Y., Takagi, T.: Hardness evaluation for search LWE problem using progressive BKZ simulator. IEICE Trans. 101–A(12), 2162–2170 (2018)
Wang, Y., Takagi, T.: Studying lattice reduction algorithms improved by quick reordering technique. Int. J. Inf. Sec. 20(2), 257–268 (2021). https://doi.org/10.1007/s10207-020-00501-y
Yamamura, K., Wang, Y., Fujisaki, E.: Improved lattice enumeration algorithms by primal and dual reordering methods. In: Park, J.H., Seo, S. (eds.) Information Security and Cryptology - ICISC 2021–24th International Conference, Seoul, South Korea, December 2021, Revised Selected Papers, volume 13218 of Lecture Notes in Computer Science, pp. 159–174. Springer (2021). https://doi.org/10.1007/978-3-031-08896-4_8
Yasuda, T.: Multivariate encryption schemes based on the constrained MQ problem. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 129–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_8
Yasuda, T.: Multivariate public key system using noise. In: SCIS 2020 (2020)
Yasuda, T., Wang, Y., Takagi, T.: Multivariate encryption schemes based on polynomial equations over real numbers. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 402–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_22
Acknowledgement
We thank Dr. Atsushi Takayasu for his helpful comments on this work. This work was supported by JSPS KAKENHI Grant Number JP20K23322, JP21K11751, JP19K20266, JP20K03741, Japan. This work is based on the discussions at FY2019 IMI Joint Usage Research Program Short-term Joint Research “New Development of Constructing Next-Generation Cryptography via Unified Approaches of Mathematics Theory, Computation and Cryptology”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Ikematsu, Y., Yasuda, T. (2022). Lattice-Based Public Key Cryptosystems Invoking Linear Mapping Mask. In: Ge, C., Guo, F. (eds) Provable and Practical Security. ProvSec 2022. Lecture Notes in Computer Science, vol 13600. Springer, Cham. https://doi.org/10.1007/978-3-031-20917-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-20917-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20916-1
Online ISBN: 978-3-031-20917-8
eBook Packages: Computer ScienceComputer Science (R0)