Abstract
Multi-key fully homomorphic encryption (MKFHE) schemes support arbitrary computations on data encrypted by different keys. Especially, in the fully dynamic setting, any ciphertexts can be computed at any time while maintaining the compactness. In this case, no information about the parties and the computation function need be known before the evaluation. However, all existing constructions are based on the learning with errors (LWE) problem or learning with rounding (LWR) problem, and thus only allow to encrypt a single bit. On the other hand, FHEW-like cryptosystems are computation-efficient in the sense that they can evaluate arbitrary Boolean circuits on encrypted data followed by the boostrapping procedure. To this end, in this paper, we propose a batched fully dynamic multi-key FHE scheme based on FHEW-like cryptosystems. Specifically, instead of a single bit, our construction encrypts a ring element, and thus has low amortized cost. In addition, as a core building block of construction, we put forward a new multi-key ring-LWE accumulator with homomorphic discrete Fourier transform (DFT) for the boostrapping procedure, which might be of independent interest. The theoretical analysis indicates that the amortized computation cost of generating evaluation key and storage cost achieve optimal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The Homomorphic Encryption standardization document [7] supports the use of Gaussian and ternary secrets.
- 2.
k denots the number of the parties involved in the evaluation.
- 3.
k is always larger than \(k'\).
- 4.
T represents a transposition.
References
Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42
Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in nc\({^1}\). J. Comput. Syst. Sci. 38(1), 150–164 (1989). https://doi.org/10.1016/0022-0000(89)90037-8
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1-13:36 (2014). https://doi.org/10.1145/2633600
Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_8
Chase, M., et al.: Security of homomorphic encryption. Technical report, HomomorphicEncryption.org, Redmond WA, USA (2017)
Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 446–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_16
Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS, pp. 395–412. ACM (2019). https://doi.org/10.1145/3319535.3363207
Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE bootstrapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_12
Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from Ring-LWE with compact ciphertext extension. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 597–627. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_20
Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_14
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1
Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_31
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch. 2012, 144 (2012). http://eprint.iacr.org/2012/144
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178. ACM (2009). https://doi.org/10.1145/1536414.1536440
Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_25
Huang, Y., Wu, K., Chen, M.: Fully dynamic multi-key FHE without gaussian noise. IEEE Access 9, 50639–50645 (2021). https://doi.org/10.1109/ACCESS.2021.3069214
López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, pp. 1219–1234. ACM (2012). https://doi.org/10.1145/2213977.2214086
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3
Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. In: WAHC 2021: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Virtual Event, pp. 17–28. WAHC@ACM (2021). https://doi.org/10.1145/3474366.3486924
Micciancio, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018. LIPIcs, vol. 107, pp. 100:1–100:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.100
Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26
Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_9
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93. ACM (2005), https://doi.org/10.1145/1060590.1060603
Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Crypt. 71(1), 57–81 (2012). https://doi.org/10.1007/s10623-012-9720-4
Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Proceedings of the 44th Symposium on Theory of Computing Conference, STOC, pp. 887–898. ACM (2012). https://doi.org/10.1145/2213977.2214056
Acknowledgement
This work was supported by the National Nature Science Foundation of China under Grant 62172434.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, Y., Wei, J., Pan, J. (2022). Batched Fully Dynamic Multi-key FHE from FHEW-Like Cryptosystems. In: Ge, C., Guo, F. (eds) Provable and Practical Security. ProvSec 2022. Lecture Notes in Computer Science, vol 13600. Springer, Cham. https://doi.org/10.1007/978-3-031-20917-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-20917-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20916-1
Online ISBN: 978-3-031-20917-8
eBook Packages: Computer ScienceComputer Science (R0)