Skip to main content

Sleep Stage Detection on a Wearable Headband Using Deep Neural Networks

  • Conference paper
  • First Online:
Internet of Things (GIoTS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13533))

Included in the following conference series:

  • 757 Accesses

Abstract

The flexible PCB medical device developed at our research lab calculates a single-channel EOG. We develop an infrastructure for our device, including an IoT structure for capturing data. As well as an algorithm that can detect Sleep Stages using EOG data from our device. Previous attempts at classifying sleep always use data from double-channel EOG data. Initially, we used a labelled sleep dataset from the University of Wisconsin to train our neural network. We then apply transfer learning to the sleep classifier with data extracted from our device. Overall, we were able to successfully create a model with data from the medical device and obtain a 81.19% sleep stage classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Debbarma, S., Bhadra, S.: A lightweight flexible wireless electrooculogram monitoring system with printed gold electrodes. IEEE Sens. J. 21(18), 20931–20942 (2021). https://doi.org/10.1109/jsen.2021.3095423

    Article  Google Scholar 

  2. Frishman, L.J.: Electrogenesis of the electroretinogram. In: Retina, pp. 177–201. Elsevier (2013). https://doi.org/10.1016/b978-1-4557-0737-9.00007-2

  3. Malhotra, R.K., Avidan, A.Y.: Sleep stages and scoring technique. In: Atlas of Sleep Medicine, pp. 77–99. Elsevier (2014). https://doi.org/10.1016/b978-1-4557-1267-0.00003-5

  4. Stages of Sleep: REM and Non-REM Sleep Cycles. https://www.webmd.com/sleep-disorders/sleep-101

  5. Dixon, M., Schneider, L., Yu, J., et al.: Sleep-wake detection with a contactless, bedside radar sleep sensing system. Technical report (2021)

    Google Scholar 

  6. Rimminen, H., Amin, A.M., Weadon, T.L., et al.: On-bed differential piezoelectric sensor, February 2021

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition (2015). arXiv: 1512.03385 [cs.CV]

  8. Fan, J., Sun, C., Long, M., et al.: EOGNET: a novel deep learning model for sleep stage classification based on single-channel EOG signal. Front. Neurosci. 15, 573194 (2021)

    Article  Google Scholar 

  9. Zhang, J., Yao, R., Ge, W., et al.: Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG. Comput. Methods Programs Biomed. 183, 105089 (2020). https://doi.org/10.1016/j.cmpb.2019.105089

    Article  Google Scholar 

  10. Dixon, M., Lee, R.S.: Contactless sleep sensing in Nest Hub, March 2021. https://ai.googleblog.com/2021/03/contactless-sleep-sensing-in-nest-hub.html

  11. Krigolson, O.E., Williams, C.C., Norton, A., et al.: Choosing MUSE: validation of a low-cost, portable EEG system for ERP research. Front. Neurosci. 11 (2017). https://doi.org/10.3389/fnins.2017.00109

  12. Wilkinson, C.M., Burrell, J.I., Kuziek, J.W.P., et al.: Application of the Muse portable EEG system to aid in rapid diagnosis of stroke, June 2020. https://doi.org/10.1101/2020.06.01.20119586

  13. Krigolson, O.E., Williams, C.C., Colino, F.L.: Using portable EEG to assess human visual attention. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2017. LNCS (LNAI), vol. 10284, pp. 56–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58628-1_5

    Chapter  Google Scholar 

  14. Berry, R.B., Brooks, R., Gamaldo, C., et al.: AASM scoring manual updates for 2017 (version 2.4). J. Clin. Sleep Med. 13(05), 665–666 (2017). https://doi.org/10.5664/jcsm.6576

    Article  Google Scholar 

  15. Boigne, J., Liyanage, B., Östrem, T.: Recognizing more emotions with less data using self-supervised transfer learning (2020). https://doi.org/10.48550/ARXIV.2011.05585. https://arxiv.org/abs/2011.05585

  16. Kunze, J., Kirsch, L., Kurenkov, I., et al.: Transfer learning for speech recognition on a budget. CoRR abs/1706.00290 (2017). arXiv: 1706.00290

  17. Huh, M., Agrawal, P., Efros, A.A.: What makes ImageNet good for transfer learning? (2016). https://doi.org/10.48550/ARXIV.1608.08614. https://arxiv.org/abs/1608.08614

  18. Morgan, K.K.: What is Polysomnography (PSG)? https://www.webmd.com/sleep-disorders/what-is-polysomnography

  19. Zhang, G.-Q., Cui, L., Mueller, R., et al.: The national sleep research resource: towards a sleep data commons. J. Am. Med. Inf. Assoc. 25(10), 1351–1358 (2018). https://doi.org/10.1093/jamia/ocy064

    Article  Google Scholar 

  20. Young, T., Palta, M., Dempsey, J., et al.: Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ 108(5), 246–249 (2009)

    Google Scholar 

  21. Virtanen, P., Gommers, R., Oliphant, T.E., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  22. Chawla, N.V., Bowyer, K.W., Hall, L.O., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  23. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967). https://doi.org/10.1109/tau.1967.1161901

    Article  Google Scholar 

  24. Shanmugam, D., Blalock, D., Balakrishnan, G., et al.: When and why test-time augmentation works. arXiv e-prints, arXiv-2011 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Hamza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamza, M., Bhadra, S., Zilic, Z. (2022). Sleep Stage Detection on a Wearable Headband Using Deep Neural Networks. In: González-Vidal, A., Mohamed Abdelgawad, A., Sabir, E., Ziegler, S., Ladid, L. (eds) Internet of Things. GIoTS 2022. Lecture Notes in Computer Science, vol 13533. Springer, Cham. https://doi.org/10.1007/978-3-031-20936-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20936-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20935-2

  • Online ISBN: 978-3-031-20936-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics