Skip to main content

Online Decentralized Frank-Wolfe: From Theoretical Bound to Applications in Smart-Building

  • Conference paper
  • First Online:
Internet of Things (GIoTS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13533))

Included in the following conference series:

  • 970 Accesses

Abstract

The design of decentralized learning algorithms is important in the fast-growing world in which data are distributed over participants with limited local computation resources and communication. In this direction, we propose an online algorithm minimizing non-convex loss functions aggregated from individual data/models distributed over a network. We provide the theoretical performance guarantee of our algorithm and demonstrate its utility on a real life smart building.

Supported by the Multidisciplinary Institute in Artificial Intelligence, Univ.Grenoble Alpes, France (ANR-19-P3IA-0003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Aziz, H., Koutsoukos, X.: Data-driven online learning and reachability analysis of stochastic hybrid systems for smart buildings. Cyber Phys. Syst. 5(1), 41–64 (2019)

    Article  Google Scholar 

  2. Cai, M., Pipattanasomporn, M., Rahman, S.: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques. Appl. Energy 236, 1078–1088 (2019)

    Google Scholar 

  3. Chen, L., Hassani, H., Karbasi, A.: Online continuous submodular maximization. In: Proceedings 21st International Conference on Artificial Intelligence and Statistics (AISTAT) (2018)

    Google Scholar 

  4. Chiliang, Z., Tao, H., Yingda, G., Zuochang, Y.: Accelerating convolutional neural networks with dynamic channel pruning. In: 2019 Data Compression Conference (DCC), p. 563 (2019)

    Google Scholar 

  5. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  6. Gupta, C., et al.: ProtoNN: Compressed and accurate kNN for resource-scarce devices. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1331–1340. PMLR (2017)

    Google Scholar 

  7. Gupta, S.K., Kar, K., Mishra, S., Wen, J.T.: Distributed consensus algorithms for collaborative temperature control in smart buildings. In: 2015 American Control Conference (ACC), pp. 5758–5763. IEEE (2015)

    Google Scholar 

  8. Hazan, E.: Introduction to online convex optimization. Found. Trends Optim. 2(3–4), 157–325 (2016)

    Google Scholar 

  9. He, L., Bian, A., Jaggi, M.: Cola: decentralized linear learning. In: Advances in Neural Information Processing Systems, pp. 4536–4546 (2018)

    Google Scholar 

  10. Hosseini, S., Chapman, A., Mesbahi, M.: Online distributed optimization via dual averaging. In: 52nd IEEE Conference on Decision and Control, pp. 1484–1489 (2013)

    Google Scholar 

  11. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: Proceedings of the 30th International Conference on Machine Learning (2013)

    Google Scholar 

  12. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., et al.: Advances and Open Problems in Federated Learning. Foundations and Trends® in Machine Learning 14(1), (2021)

    Google Scholar 

  13. Lian, X., Zhang, C., Zhang, H., Hsieh, C.J., Zhang, W., Liu, J.: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent. In: Advances in Neural Information Processing Systems, pp. 5330–5340 (2017)

    Google Scholar 

  14. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  15. MacCarthy, M.: In defense of big data analytics. The Cambridge Handbook of Consumer Privacy, pp. 47–78 (2018)

    Google Scholar 

  16. McMahan, B., Ramage, D.: Collaborative machine learning without centralized training data. Google Research Blog 3 (2017)

    Google Scholar 

  17. Mitra, A., Thang, N.K., Nguyen, T.A., Trystram, D., Youssef, P.: Online Decentralized Frank-Wolfe: from theoretical bound to applications in smart-building (2022)

    Google Scholar 

  18. Nan, F., Wang, J., Saligrama, V.: Pruning random forests for prediction on a budget. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol, 29. Curran Associates, Inc. (2016)

    Google Scholar 

  19. Pipattanasomporn, M., et al.: Cu-bems, smart building electricity consumption and indoor environmental sensor datasets. Sci. Data 7, (2020)

    Google Scholar 

  20. Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J., Criminisi, A.: Decision jungles: compact and rich models for classification. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 26. Curran Associates, Inc. (2013)

    Google Scholar 

  21. Simons, T., Lee, D.J.: A review of binarized neural networks. Electronics 8(6), 661 (2019)

    Google Scholar 

  22. Wai, H., Lafond, J., Scaglione, A., Moulines, E.: Decentralized frank-wolfe algorithm for convex and nonconvex problems. IEEE Trans. Autom. Control 62(11), 5522–5537 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, S., et al.: When edge meets learning: Adaptive control for resource-constrained distributed machine learning. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pp. 63–71 (2018)

    Google Scholar 

  24. Yan, F., Sundaram, S., Vishwanathan, S.V.N., Qi, Y.: Distributed autonomous online learning: regrets and intrinsic privacy-preserving properties. IEEE Trans. Knowl. Data Eng. 25(11), 2483–2493 (2013)

    Article  Google Scholar 

  25. Zamora-Martinez, F., Romeu, P., Botella-Rocamora, P., Pardo, J.: On-line learning of indoor temperature forecasting models towards energy efficiency. Energy. Build. 83, 162–172 (2014)

    Google Scholar 

  26. Zhang, W., Zhao, P., Zhu, W., Hoi, S., Zhang, T.: Projection-free distributed online learning in networks. In: Proceedings of the 34th International Conference on Machine Learning, pp. 4054–4062 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan-Anh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitra, A., Thang, N.K., Nguyen, TA., Trystram, D., Youssef, P. (2022). Online Decentralized Frank-Wolfe: From Theoretical Bound to Applications in Smart-Building. In: González-Vidal, A., Mohamed Abdelgawad, A., Sabir, E., Ziegler, S., Ladid, L. (eds) Internet of Things. GIoTS 2022. Lecture Notes in Computer Science, vol 13533. Springer, Cham. https://doi.org/10.1007/978-3-031-20936-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20936-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20935-2

  • Online ISBN: 978-3-031-20936-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics