Skip to main content

A Smart IoT Gateway Capable of Prescreening for Atrial Fibrillation

  • Conference paper
  • First Online:
Internet of Things (GIoTS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13533))

Included in the following conference series:

  • 697 Accesses

Abstract

Atrial fibrillation (AF) is a cardiac arrhythmia occurring when the atria lose their normal rhythm causing the heart to beat erratically. The estimated number of individuals with atrial fibrillation globally in 2010 was 33.5 million. Despite continued research in this area there is no universal standard for detecting atrial fibrillation. The majority of published detectors rely on manual classification techniques that are implemented on standalone devices. This paper proposes a dual convolutional neural network (CNN) based AF detection system. The proposed system transforms 5 s windows of electrocardiogram data to two-dimensional images via a stationary wavelet transform to serve as CNN inputs. The dual CNN system implements a model tailored for an IoT gateway device to prescreen arrhythmia cases locally. Less obvious arrhythmia cases are transferred to a secondary model hosted on a cloud server for further prediction. Local classification of AF reduces the overheads for cloud storage capacity and transfer of data. The proposed runtime system ultimately received an F1 score of 0.94 when evaluated using previously unseen data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asgari, S., Mehrnia, A., Moussavi, M.: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput. Biol. Med. 60, 132–142 (2015)

    Article  Google Scholar 

  2. Babaeizadeh, S., Gregg, R.E., Helfenbein, E.D., Lindauer, J.M., Zhou, S.H.: Improvements in atrial fibrillation detection for real-time monitoring. J. Electrocardiol. 42(6), 522–526 (2009)

    Article  Google Scholar 

  3. Censi, F., et al.: P-wave morphology assessment by a Gaussian functions-based model in atrial fibrillation patients. IEEE Trans. Biomed. Eng. 54(4), 663–672. (2007). Conference Name: IEEE Transactions on Biomedical Engineering

    Google Scholar 

  4. Cheng, S., Tamil, L.S., Levine, B.: A mobile health system to identify the onset of paroxysmal atrial fibrillation. In: 2015 International Conference on Healthcare Informatics, pp. 189–192 (2015)

    Google Scholar 

  5. Chugh, S.S., et al.: Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 129(8), 837–847 (2014)

    Google Scholar 

  6. Chugh, S.S., et al.: Worldwide epidemiology of atrial fibrillation. Circulation 129(8), 837–847 (2014)

    Google Scholar 

  7. Dash, S., Chon, K.H., Lu, S., Raeder, E.A.: Automatic real time detection of atrial fibrillation. Ann. Biomed. Eng. 37(9), 1701–1709 (2009)

    Article  Google Scholar 

  8. De Giovanni, E., Aminifar, A., Luca, A., Yazdani, S., Vesin, J.M., Atienza, D.: A patient-specific methodology for prediction of paroxysmal atrial fibrillation onset. In: 2017 Computing in Cardiology (CinC), pp. 1–4. iSSN: 2325–887X (2017)

    Google Scholar 

  9. Goldberger, A., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. 101(23), e215–e220 (2000). https://physionet.org/content/afdb/

  10. Hong, S., Zhou, Y., Shang, J., Xiao, C., Sun, J.: Opportunities and challenges of deep learning methods for electrocardiogram data: a systematic review. Comput. Biol. Med. 122, 103801 (2020)

    Article  Google Scholar 

  11. Kameenoff, J.: Signal processing techniques for removing noise from ECG signals. Biomed. Eng. Res. 1(1), 1 (2017). publisher: JScholar Publishers

    Google Scholar 

  12. Khan, A.H., Hussain, M., Malik, M.K.: Arrhythmia classification techniques using deep neural network. Complexity 2021, 1–10 (2021). https://doi.org/10.1155/2021/9919588

  13. Krijthe, B.P., et al.: Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart J. 34(35), 2746–2751 (2013)

    Google Scholar 

  14. Ladavich, S., Ghoraani, B.: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomed. Signal Process. Control 18, 274–281 (2015)

    Article  Google Scholar 

  15. Lee, J., Nam, Y., McManus, D.D., Chon, K.H.: Time-varying coherence function for atrial fibrillation detection. IEEE Trans. Biomed. Eng. 60(10), 2783–2793 (2013)

    Article  Google Scholar 

  16. Logan, B., Healey, J.: Robust detection of atrial fibrillation for a long term telemonitoring system. In: Computers in Cardiology, pp. 619–622. iSSN: 2325–8853 (2005)

    Google Scholar 

  17. Miyasaka, Y., et al.: Secular trends in incidence of atrial fibrillation in olmsted county, minnesota, 1980 to 2000, and implications on the projections for future prevalence. American Heart Association. Circulation 114(2), 119–125 (2006). publisher: American Heart Association

    Google Scholar 

  18. Murat, F., et al.: Review of deep learning-based atrial fibrillation detection studies. Int. J. Environ. Res. Public Health 18(21), 11302 (2021). https://doi.org/10.3390/ijerph182111302

  19. Nason, G.P., Silverman, B.W.: The stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics, pp. 281–299. Lecture Notes in Statistics, Springer, New York (1995). https://doi.org/10.1007/978-1-4612-2544-7_17

    Chapter  MATH  Google Scholar 

  20. Pourbabaee, B., Lucas, C.: Automatic detection and prediction of paroxysmal atrial fibrillation based on analyzing ecg signal feature classification methods. In: 2008 Cairo International Biomedical Engineering Conference, Cairo, Egypt, pp. 1–4. IEEE (2008)

    Google Scholar 

  21. Ródenas, J., García, M., Alcaraz, R., Rieta, J.J.: Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. Entropy 17(9), 6179–6199 (2015). Publisher: Multidisciplinary Digital Publishing Institute

    Google Scholar 

  22. Singh, S., Sunkaria, R., Saini, B., Kumar, K.: Atrial fibrillation and premature contraction classification using convolutional neural network. In: 2019 International Conference on Intelligent Computing and Control Systems (ICCS), pp. 797–800 (2019). https://doi.org/10.1109/ICCS45141.2019.9065716

  23. Tateno, K., Glass, L.: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and delta RR intervals. Med. Biol. Eng. Comput. 39(6), 664–671 (2001)

    Article  Google Scholar 

  24. Um, T.T., et al.: Data augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional neural networks. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 216–220. ICMI 2017, Association for Computing Machinery, New York, USA (2017)

    Google Scholar 

  25. Wu, Z., Feng, X., Yang, C.: A Deep learning method to detect atrial fibrillation based on continuous wavelet transform. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1908–1912. iSSN: 1558–4615 (2019)

    Google Scholar 

  26. Xia, Y., Wulan, N., Wang, K., Zhang, H.: Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 93, 84–92 (2018)

    Article  Google Scholar 

  27. Zhou, X., Ding, H., Ung, B., Pickwell-MacPherson, E., Zhang, Y.: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. Biomed. Eng. Online 13(1), 18 (2014)

    Article  Google Scholar 

  28. Zhou, X., Ding, H., Wu, W., Zhang, Y.: A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate. PLoS ONE 10(9), e0136544 (2015). publisher: Public Library of Science

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin Flanagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Flanagan, E., Sadleir, R. (2022). A Smart IoT Gateway Capable of Prescreening for Atrial Fibrillation. In: González-Vidal, A., Mohamed Abdelgawad, A., Sabir, E., Ziegler, S., Ladid, L. (eds) Internet of Things. GIoTS 2022. Lecture Notes in Computer Science, vol 13533. Springer, Cham. https://doi.org/10.1007/978-3-031-20936-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20936-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20935-2

  • Online ISBN: 978-3-031-20936-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics