Abstract
Crowdsourcing applications are vulnerable to Sybil attacks where attackers create many accounts to submit bogus or malicious data at scale. The traditional approach to manage Sybil attacks is privacy invasive since it requires contributors to identify themselves when contributing data. In this paper we present a new reporting protocol which supports the anonymous submission of data to crowdsourcing systems by honest contributors, while identifying malicious individuals who attempt to submit multiple reports. Our approach builds on Chaum’s digital cash, and we demonstrate its practicality and deployability on mobile devices based on its low storage, network, runtime, and power requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aslam, B., Zou, C.C.: One-way-linkable blind signature security architecture for VANET. In: 2011 IEEE Consumer Communications and Networking Conference (CCNC), pp. 745–750 (2011). https://doi.org/10.1109/CCNC.2011.5766590
Balle, B., Bell, J., Gascón, A., Nissim, K.: Private summation in the multi-message shuffle model. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS 2020, pp. 657–676. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3372297.3417242
Baza, M., et al.: Detecting Sybil attacks using proofs of work and location in VANETS. IEEE Trans. Dependable Secure Comput. 19(1), 39–53 (2022). https://doi.org/10.1109/TDSC.2020.2993769
Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3) (2003). https://doi.org/10.1007/s00145-002-0120-1
Beresford, A.R.: Location privacy in ubiquitous computing. Ph.D. thesis, University of Cambridge (2004)
Beresford, A., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Comput. 2(1), 46–55 (2003). https://doi.org/10.1109/MPRV.2003.1186725
Beresford, A., Stajano, F.: Mix zones: user privacy in location-aware services. In: IEEE Annual Conference on Pervasive Computing and Communications Workshops, Proceedings of the Second, pp. 127–131 (2004). https://doi.org/10.1109/PERCOMW.2004.1276918
Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-4_18
Chaum, D.: Online cash checks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 288–293. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_30
Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_25
Chen, M., Yang, J., Hu, L., Hossain, M.S., Muhammad, G.: Urban healthcare big data system based on crowdsourced and cloud-based air quality indicators. IEEE Commun. Mag. 56(11), 14–20 (2018). https://doi.org/10.1109/MCOM.2018.1700571
Cheu, A., Smith, A., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential privacy via shuffling. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 375–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_13
CityPulse EU FP7 project: Smart City Datasets (2016). http://iot.ee.surrey.ac.uk:8080/datasets.html
De Cristofaro, E., Soriente, C.: Short paper: PEPSI–privacy-enhanced participatory sensing infrastructure. In: WiSec 2011, pp. 23–28. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/1998412.1998418
De Cristofaro, E., Soriente, C.: Extended capabilities for a privacy-enhanced participatory sensing infrastructure (PEPSI). IEEE Trans. Inf. Forensics Secur. 8(12), 2021–2033 (2013). https://doi.org/10.1109/TIFS.2013.2287092
De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3(1), 1–5 (2013). https://doi.org/10.1038/srep01376
Diaz, C., Halpin, H., Kiayias, A.: The Nym Network (2021). https://nymtech.net/whitepaper
Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. Technical report, Naval Research Lab Washington DC (2004)
Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_24
Dreier, J., Kassem, A., Lafourcade, P.: Formal analysis of E-cash protocols. In: 2015 12th International Joint Conference on E-Business and Telecommunications (ICETE), vol. 04, pp. 65–75 (2015)
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1
Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014). https://doi.org/10.1561/0400000042
Erkin, Z., Troncoso-pastoriza, J.R., Lagendijk, R., Perez-Gonzalez, F.: Privacy-preserving data aggregation in smart metering systems: an overview. IEEE Signal Process. Mag. 30(2), 75–86 (2013). https://doi.org/10.1109/MSP.2012.2228343
Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta, A.: Amplification by shuffling: from local to central differential privacy via anonymity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2468–2479. SIAM (2019). https://doi.org/10.1137/1.9781611975482.151
Erlingsson, U., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS 2014, pp. 1054–1067. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2660267.2660348
Gambs, S., Killijian, M.O., Núñez del Prado Cortez, M.: De-anonymization attack on geolocated data. J. Comput. Syst. Sci. 80(8), 1597–1614 (2014). https://doi.org/10.1016/j.jcss.2014.04.024. Special Issue on Theory and Applications in Parallel and Distributed Computing Systems
Ghazi, B., Kumar, R., Manurangsi, P., Pagh, R., Sinha, A.: Differentially private aggregation in the shuffle model: almost central accuracy in almost a single message. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 3692–3701. PMLR, 18–24 July 2021. https://proceedings.mlr.press/v139/ghazi21a.html
Ghazi, B., Manurangsi, P., Pagh, R., Velingker, A.: Private aggregation from fewer anonymous messages. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 798–827. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_27
Gisdakis, S., Giannetsos, T., Papadimitratos, P.: SPPEAR: security & privacy-preserving architecture for participatory-sensing applications. In: Proceedings of the 2014 ACM Conference on Security and Privacy in Wireless & Mobile Networks, WiSec 2014, pp. 39–50. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2627393.2627402
Golle, P., Partridge, K.: On the anonymity of home/work location pairs. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 390–397. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01516-8_26
Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, MobiSys 2003, pp. 31–42. Association for Computing Machinery, New York (2003). https://doi.org/10.1145/1066116.1189037
Hern, A.: Berlin artist uses 99 phones to trick Google into traffic jam alert. The Guardian (2020). https://www.theguardian.com/technology/2020/feb/03/berlin-artist-uses-99-phones-trick-google-maps-traffic-jam-alert
Huang, J., Qian, F., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: A close examination of performance and power characteristics of 4G LTE networks. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys 2012, pp. 225–238. Association for Computing Machinery (2012). https://doi.org/10.1145/2307636.2307658
Huang, L., Matsuura, K., Yamane, H., Sezaki, K.: Enhancing wireless location privacy using silent period. In: IEEE Wireless Communications and Networking Conference, vol. 2, pp. 1187–1192 (2005). https://doi.org/10.1109/WCNC.2005.1424677
Hugenroth, D.: Measuring energy consumption of privacy-preserving protocols for fun and profit (2021). https://mobiuk.org/2021/abstract/S5-P2_Hugenroth_MeasuringEnergyConsumptionPrivacyPreserving.pdf. mobiUK 2021
Joseph, M., Roth, A., Ullman, J., Waggoner, B.: Local differential privacy for evolving data. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)
Kamthe, N.S., Kamala, K.K., Husaini Basha, A.S., Sharma, P.: Project_DigitalCash (2020). https://github.com/koushik-kumar/Project_DigitalCash
Liu, Y., Guo, W., Fan, C.I., Chang, L., Cheng, C.: A practical privacy-preserving data aggregation (3PDA) scheme for smart grid. IEEE Trans. Industr. Inf. 15(3), 1767–1774 (2019). https://doi.org/10.1109/TII.2018.2809672
Meier, F., Fenner, D., Grassmann, T., Otto, M., Scherer, D.: Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate 19, 170–191 (2017). https://doi.org/10.1016/j.uclim.2017.01.006
National Highway Traffic Safety Administration: NHTSA: Vehicle-to-Vehicle Communication (2021). https://www.nhtsa.gov/technology-innovation/vehicle-vehicle-communication
Overeem, A., Robinson, J.C.R., Leijnse, H., Steeneveld, G.J., Horn, B.K.P, Uijlenhoet, R.: Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett. 40(15), 4081–4085 (2013). https://doi.org/10.1002/grl.50786
Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix anonymity system. In: 26th USENIX Security Symposium (USENIX Security 17), pp. 1199–1216. USENIX Association, Vancouver, August 2017. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
Rice, A., Hay, S.: Decomposing power measurements for mobile devices. In: 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 70–78 (2010). https://doi.org/10.1109/PERCOM.2010.5466991
Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical report, SRI International (1998)
Shi, E., Chan, T.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Proceedings NDSS, vol. 2, pp. 1–17. Citeseer (2011)
Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2011). https://doi.org/10.1109/TMC.2010.133
Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.: Privacy loss in Apple’s implementation of differential privacy on macOS 10.12. arXiv preprint arXiv:1709.02753 (2017)
Texas Instruments: INA219 data sheet, product information and support (2021). https://www.ti.com/product/INA219
Wang, G., Wang, B., Wang, T., Nika, A., Zheng, H., Zhao, B.Y.: Ghost riders: Sybil attacks on crowdsourced mobile mapping services. IEEE/ACM Trans. Network. 26(3), 1123–1136 (2018). https://doi.org/10.1109/TNET.2018.2818073
Wang, X., Jiang, J., Zhao, S., Bai, L.: A fair blind signature scheme to revoke malicious vehicles in VANETs. Comput. Mater. Continua 58(1), 249–262 (2019). https://doi.org/10.32604/cmc.2019.04088
Zang, H., Bolot, J.: Anonymization of location data does not work: a large-scale measurement study. In: Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, pp. 145–156 (2011). https://doi.org/10.1145/2030613.2030630
Acknowledgements
We thank Daniel Hugenroth for his help in obtaining mobile device power consumption measurements. We are grateful to anonymous reviewers for their feedback. We acknowledge and thank Fundación Mapfre Guanarteme and Nokia Bell Labs for their generous financial support. The views, opinions and findings in this paper are those of the authors and not necessarily those of our funders.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Saavedra, L.A., Beresford, A.R. (2022). ACDC: Anonymous Crowdsourcing Using Digital Cash. In: Beresford, A.R., Patra, A., Bellini, E. (eds) Cryptology and Network Security. CANS 2022. Lecture Notes in Computer Science, vol 13641. Springer, Cham. https://doi.org/10.1007/978-3-031-20974-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-20974-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20973-4
Online ISBN: 978-3-031-20974-1
eBook Packages: Computer ScienceComputer Science (R0)