Skip to main content

ACDC: Anonymous Crowdsourcing Using Digital Cash

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2022)

Abstract

Crowdsourcing applications are vulnerable to Sybil attacks where attackers create many accounts to submit bogus or malicious data at scale. The traditional approach to manage Sybil attacks is privacy invasive since it requires contributors to identify themselves when contributing data. In this paper we present a new reporting protocol which supports the anonymous submission of data to crowdsourcing systems by honest contributors, while identifying malicious individuals who attempt to submit multiple reports. Our approach builds on Chaum’s digital cash, and we demonstrate its practicality and deployability on mobile devices based on its low storage, network, runtime, and power requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aslam, B., Zou, C.C.: One-way-linkable blind signature security architecture for VANET. In: 2011 IEEE Consumer Communications and Networking Conference (CCNC), pp. 745–750 (2011). https://doi.org/10.1109/CCNC.2011.5766590

  2. Balle, B., Bell, J., Gascón, A., Nissim, K.: Private summation in the multi-message shuffle model. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS 2020, pp. 657–676. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3372297.3417242

  3. Baza, M., et al.: Detecting Sybil attacks using proofs of work and location in VANETS. IEEE Trans. Dependable Secure Comput. 19(1), 39–53 (2022). https://doi.org/10.1109/TDSC.2020.2993769

    Article  Google Scholar 

  4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3) (2003). https://doi.org/10.1007/s00145-002-0120-1

  5. Beresford, A.R.: Location privacy in ubiquitous computing. Ph.D. thesis, University of Cambridge (2004)

    Google Scholar 

  6. Beresford, A., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Comput. 2(1), 46–55 (2003). https://doi.org/10.1109/MPRV.2003.1186725

    Article  Google Scholar 

  7. Beresford, A., Stajano, F.: Mix zones: user privacy in location-aware services. In: IEEE Annual Conference on Pervasive Computing and Communications Workshops, Proceedings of the Second, pp. 127–131 (2004). https://doi.org/10.1109/PERCOMW.2004.1276918

  8. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-4_18

    Chapter  Google Scholar 

  9. Chaum, D.: Online cash checks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 288–293. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_30

    Chapter  Google Scholar 

  10. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_25

    Chapter  Google Scholar 

  11. Chen, M., Yang, J., Hu, L., Hossain, M.S., Muhammad, G.: Urban healthcare big data system based on crowdsourced and cloud-based air quality indicators. IEEE Commun. Mag. 56(11), 14–20 (2018). https://doi.org/10.1109/MCOM.2018.1700571

    Article  Google Scholar 

  12. Cheu, A., Smith, A., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential privacy via shuffling. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 375–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_13

    Chapter  Google Scholar 

  13. CityPulse EU FP7 project: Smart City Datasets (2016). http://iot.ee.surrey.ac.uk:8080/datasets.html

  14. De Cristofaro, E., Soriente, C.: Short paper: PEPSI–privacy-enhanced participatory sensing infrastructure. In: WiSec 2011, pp. 23–28. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/1998412.1998418

  15. De Cristofaro, E., Soriente, C.: Extended capabilities for a privacy-enhanced participatory sensing infrastructure (PEPSI). IEEE Trans. Inf. Forensics Secur. 8(12), 2021–2033 (2013). https://doi.org/10.1109/TIFS.2013.2287092

    Article  Google Scholar 

  16. De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3(1), 1–5 (2013). https://doi.org/10.1038/srep01376

    Article  Google Scholar 

  17. Diaz, C., Halpin, H., Kiayias, A.: The Nym Network (2021). https://nymtech.net/whitepaper

  18. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. Technical report, Naval Research Lab Washington DC (2004)

    Google Scholar 

  19. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_24

    Chapter  Google Scholar 

  20. Dreier, J., Kassem, A., Lafourcade, P.: Formal analysis of E-cash protocols. In: 2015 12th International Joint Conference on E-Business and Telecommunications (ICETE), vol. 04, pp. 65–75 (2015)

    Google Scholar 

  21. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  22. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014). https://doi.org/10.1561/0400000042

    Article  MathSciNet  MATH  Google Scholar 

  23. Erkin, Z., Troncoso-pastoriza, J.R., Lagendijk, R., Perez-Gonzalez, F.: Privacy-preserving data aggregation in smart metering systems: an overview. IEEE Signal Process. Mag. 30(2), 75–86 (2013). https://doi.org/10.1109/MSP.2012.2228343

    Article  Google Scholar 

  24. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta, A.: Amplification by shuffling: from local to central differential privacy via anonymity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2468–2479. SIAM (2019). https://doi.org/10.1137/1.9781611975482.151

  25. Erlingsson, U., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS 2014, pp. 1054–1067. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2660267.2660348

  26. Gambs, S., Killijian, M.O., Núñez del Prado Cortez, M.: De-anonymization attack on geolocated data. J. Comput. Syst. Sci. 80(8), 1597–1614 (2014). https://doi.org/10.1016/j.jcss.2014.04.024. Special Issue on Theory and Applications in Parallel and Distributed Computing Systems

  27. Ghazi, B., Kumar, R., Manurangsi, P., Pagh, R., Sinha, A.: Differentially private aggregation in the shuffle model: almost central accuracy in almost a single message. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 3692–3701. PMLR, 18–24 July 2021. https://proceedings.mlr.press/v139/ghazi21a.html

  28. Ghazi, B., Manurangsi, P., Pagh, R., Velingker, A.: Private aggregation from fewer anonymous messages. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 798–827. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_27

    Chapter  Google Scholar 

  29. Gisdakis, S., Giannetsos, T., Papadimitratos, P.: SPPEAR: security & privacy-preserving architecture for participatory-sensing applications. In: Proceedings of the 2014 ACM Conference on Security and Privacy in Wireless & Mobile Networks, WiSec 2014, pp. 39–50. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2627393.2627402

  30. Golle, P., Partridge, K.: On the anonymity of home/work location pairs. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 390–397. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01516-8_26

    Chapter  Google Scholar 

  31. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, MobiSys 2003, pp. 31–42. Association for Computing Machinery, New York (2003). https://doi.org/10.1145/1066116.1189037

  32. Hern, A.: Berlin artist uses 99 phones to trick Google into traffic jam alert. The Guardian (2020). https://www.theguardian.com/technology/2020/feb/03/berlin-artist-uses-99-phones-trick-google-maps-traffic-jam-alert

  33. Huang, J., Qian, F., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: A close examination of performance and power characteristics of 4G LTE networks. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys 2012, pp. 225–238. Association for Computing Machinery (2012). https://doi.org/10.1145/2307636.2307658

  34. Huang, L., Matsuura, K., Yamane, H., Sezaki, K.: Enhancing wireless location privacy using silent period. In: IEEE Wireless Communications and Networking Conference, vol. 2, pp. 1187–1192 (2005). https://doi.org/10.1109/WCNC.2005.1424677

  35. Hugenroth, D.: Measuring energy consumption of privacy-preserving protocols for fun and profit (2021). https://mobiuk.org/2021/abstract/S5-P2_Hugenroth_MeasuringEnergyConsumptionPrivacyPreserving.pdf. mobiUK 2021

  36. Joseph, M., Roth, A., Ullman, J., Waggoner, B.: Local differential privacy for evolving data. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  37. Kamthe, N.S., Kamala, K.K., Husaini Basha, A.S., Sharma, P.: Project_DigitalCash (2020). https://github.com/koushik-kumar/Project_DigitalCash

  38. Liu, Y., Guo, W., Fan, C.I., Chang, L., Cheng, C.: A practical privacy-preserving data aggregation (3PDA) scheme for smart grid. IEEE Trans. Industr. Inf. 15(3), 1767–1774 (2019). https://doi.org/10.1109/TII.2018.2809672

    Article  Google Scholar 

  39. Meier, F., Fenner, D., Grassmann, T., Otto, M., Scherer, D.: Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate 19, 170–191 (2017). https://doi.org/10.1016/j.uclim.2017.01.006

    Article  Google Scholar 

  40. National Highway Traffic Safety Administration: NHTSA: Vehicle-to-Vehicle Communication (2021). https://www.nhtsa.gov/technology-innovation/vehicle-vehicle-communication

  41. Overeem, A., Robinson, J.C.R., Leijnse, H., Steeneveld, G.J., Horn, B.K.P, Uijlenhoet, R.: Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett. 40(15), 4081–4085 (2013). https://doi.org/10.1002/grl.50786

  42. Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix anonymity system. In: 26th USENIX Security Symposium (USENIX Security 17), pp. 1199–1216. USENIX Association, Vancouver, August 2017. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska

  43. Rice, A., Hay, S.: Decomposing power measurements for mobile devices. In: 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 70–78 (2010). https://doi.org/10.1109/PERCOM.2010.5466991

  44. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical report, SRI International (1998)

    Google Scholar 

  45. Shi, E., Chan, T.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Proceedings NDSS, vol. 2, pp. 1–17. Citeseer (2011)

    Google Scholar 

  46. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2011). https://doi.org/10.1109/TMC.2010.133

    Article  Google Scholar 

  47. Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.: Privacy loss in Apple’s implementation of differential privacy on macOS 10.12. arXiv preprint arXiv:1709.02753 (2017)

  48. Texas Instruments: INA219 data sheet, product information and support (2021). https://www.ti.com/product/INA219

  49. Wang, G., Wang, B., Wang, T., Nika, A., Zheng, H., Zhao, B.Y.: Ghost riders: Sybil attacks on crowdsourced mobile mapping services. IEEE/ACM Trans. Network. 26(3), 1123–1136 (2018). https://doi.org/10.1109/TNET.2018.2818073

    Article  Google Scholar 

  50. Wang, X., Jiang, J., Zhao, S., Bai, L.: A fair blind signature scheme to revoke malicious vehicles in VANETs. Comput. Mater. Continua 58(1), 249–262 (2019). https://doi.org/10.32604/cmc.2019.04088

  51. Zang, H., Bolot, J.: Anonymization of location data does not work: a large-scale measurement study. In: Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, pp. 145–156 (2011). https://doi.org/10.1145/2030613.2030630

Download references

Acknowledgements

We thank Daniel Hugenroth for his help in obtaining mobile device power consumption measurements. We are grateful to anonymous reviewers for their feedback. We acknowledge and thank Fundación Mapfre Guanarteme and Nokia Bell Labs for their generous financial support. The views, opinions and findings in this paper are those of the authors and not necessarily those of our funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Saavedra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saavedra, L.A., Beresford, A.R. (2022). ACDC: Anonymous Crowdsourcing Using Digital Cash. In: Beresford, A.R., Patra, A., Bellini, E. (eds) Cryptology and Network Security. CANS 2022. Lecture Notes in Computer Science, vol 13641. Springer, Cham. https://doi.org/10.1007/978-3-031-20974-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20974-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20973-4

  • Online ISBN: 978-3-031-20974-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics