
This is a postprint version of the following published document:

Faonio, A., Gonzalez Vasco, M. I., Soriente, C. & 
Truong, H. T. T. (2022). Auditable Asymmetric Password 
Authenticated Public Key Establishment. In Beresford, A. 
R., Patra, A., Bellini, E. (eds), Cryptology and Network 
Security. CANS 2022. Lecture Notes in Computer 
Science, 13641 (122–142). Springer, Cham. 

DOI: 10.1007/978-3-031-20974-1_6

© 2022 The Author(s), under exclusive license to Springer Nature 
Switzerland AG.

https://doi.org/10.1007/978-3-031-20974-1_6


Auditable Asymmetric Password Authenticated Public
Key Establishment

Antonio Faonio1, Maria Isabel Gonzalez Vasco2, Claudio Soriente3, and Hien Thi Thu
Truong3

1 EURECOM, Sophia Antipolis, France antonio.faonio@eurecom.fr
2 Universidad Rey Juan Carlos, MACIMTE, Spain mariaisabel.vasco@urjc.es

3 NEC Laboratories Europe GmbH, Spain, Germany claudio.sorient@neclab.eu

Abstract. Non-repudiation of user messages is a desirable feature in a number of
online applications, but it requires digital signatures and certified cryptographic
keys. Unfortunately, the adoption of cryptographic keys often results in poor us-
ability, as users must either carry around their private keys (e.g., in a smart-card)
or store them in all of their devices. A user-friendly alternative, adopted by sev-
eral companies and national administrations, is based on so-called “cloud-based
PKI certificates”. In a nutshell, each user has a certified key-pair stored at a server
in the cloud; users authenticate to the server—via passwords or one-time codes—
and ask it to sign messages on their behalf. However, moving the key-pair from
user-private storage to the cloud impairs non-repudiation. In fact, users can al-
ways deny having signed a message, by claiming that the signature was produced
by the allegedly malicious server without their consent.
In this paper we present Auditable Asymmetric Password Authenticated Public
Key Establishment (A2PAKE), a cloud-based solution to allow users to manage
their signing key-pairs that (i) has the same usability of cloud-based PKI certifi-
cates, and (ii) guarantees non-repudiation of signatures. We do so by introduc-
ing a new ideal functionality in the Universal Composability framework named
FA2PAKE. The functionality is password-based and allows to generate asymmet-
ric key-pairs, where the public key is output to all the parties, but the secret key
is the private output of a single one (e.g., the user). Further, the functionality is
auditable: given a public key output by the functionality, a server can prove to a
third party (i.e., a judge) that the corresponding secret key is held by a specific
user. Thus, if a user signs messages with the secret key obtained via A2PAKE,
then signatures are non-repudiable. We provide an efficient instantiation based
on distributed oblivious pseudo-random functions for signature schemes based
on DLOG. We also develop a prototype implementation of our instantiation and
use it to evaluate its performance in realistic settings.

Keywords: Public Key Cryptography, Password Authentication, Server-aided Key Gen-
eration, Oblivious Pseudorandom Functions

1 Introduction

Imagine an online application where users sign their messages so that, later on, they can
be held accountable. For example, in an online banking application, the banking server



may ask a user to sign her requests to transfer funds to other accounts. Later on, in case
of dispute, the server may wish to prove to a third party (i.e., in court) that the user had
indeed requested a specific transfer operation.

Most of today’s applications, however, do not ask users to sign their messages,
mainly because of the usability issues of (certified) cryptographic keys—since users
must either carry around their private keys (e.g., in a smart-card) or store them in all of
their devices.

The most popular solution to allow users to sign their messages is based on so-called
“cloud-based PKI certificates”. In a nutshell, each user has a certified key-pair stored
at a server in the cloud; users authenticate to the server—via passwords or one-time
codes—and ask it to sign messages on their behalf. Owing to their usability, cloud-
based PKI certificates are used by a number of companies [19,30,35] and national
administration authorities [12]. Some of those companies are included as certification
authorities—or so called “qualified e-signature service providers”—in the single frame-
work for digital signatures promoted by the European Union eIDAS Regulation [13].

Cloud-based PKI certificates, however, impair non-repudiation of messages signed
by a user. In particular, a third party may not be able to tell if signatures issued by the
server on behalf of a user, had been actually authorized by that user. Since the server
holds a user key-pair and could sign any message on her behalf, that user could deny
having signed a message (i.e., by claiming that the signature was produced by the server
without her consent).

An ideal solution to enable users to sign their messages and to guarantee non-
repudiation would (i) retain the usability of password-only techniques like cloud-based
PKI certificates, and (ii) ensure that no server can impersonate or frame a user by issuing
a signature on her behalf.

We note that available password-based protocols to derive cryptographic keys are
ill-suited for the problem at hand. For example, stand-alone techniques that derive cryp-
tographic keys from low-entropy passwords (e.g., the PBKDF2 key derivation function)
are vulnerable to off-line brute-force attacks. In particular, an adversary with access to
the user public key could easily enumerate the passwords until it finds the corresponding
secret key. Further, online protocols like Password-Authenticated Key Establishment
(PAKE) cannot guarantee non-repudiation. In particular, PAKE allows two parties —
usually a user and a server — to derive a symmetric key from a common password. As
such, if a PAKE-derived key is used for signing messages, one may not ascribe the sig-
nature to the user as the same signature may have been produced by the server. Further,
by holding the user password, the server can compute the signing key offline and frame
the user at will. The same shortcoming holds in case of “asymmetric” PAKE protocols
(e.g., [24])—where the server holds a one-way function of the user password: a mali-
cious server could easily (and off-line) brute-force the password and use it to compute
the signing key.

1.1 Our Contributions

In this paper we define, instantiate and evaluate a cryptographic protocol named Au-
ditable Asymmetric Password Authenticated Public Key Establishment (A2PAKE), that
enable users to obtain certified key-pairs. The protocol is “password-only”, as users are

2



only required to remember a (low-entropy) password. At the same time, the protocol en-
sures non-frameability of honest users. Hence, if keys obtained via A2PAKE are used
to sign messages, signatures are non repudiable and users can be held accountable for
the messages they sign. Further, the protocol is auditable. Namely, a third party with in-
put a public key produced by an execution of A2PAKE and the corresponding protocol
transcript, can tell whether the protocol execution went through correctly and produced
the alleged public key.

As in threshold PAKE protocols [25,26,27,31], we use multiple servers to ensure
that no single server can run an off-line brute-force attack on the user password and
obtain her signing key. More in detail, we consider a setting where there are two servers.
The “main” server helps users obtain their keys-pairs, whereas the “secondary” server
supports its peer in authenticating users and cooperates to produce auditing evidence.
As long as one of the servers is honest, (i) the other malicious server cannot run off-
line brute-force attacks on user passwords, and (ii) a third party can pinpoint a public
key output by the protocol to the user that engaged in that protocol execution. In more
detail, we make the following contributions:

New Ideal Functionality. We introduce the A2PAKE ideal functionality. The function-
ality captures the security requirements of non-repudiation of keys generated by a (pos-
sibly malicious) user and non-frameability from a malicious server. A2PAKE allows
for the generation of fresh and auditable key-pairs for registered users and provides
forward-security, namely, secret keys generated in the past are secure even if the user
password is leaked. We defer further discussion to Section 4.

Efficient Universal-Composable Secure Protocol. We provide a protocol that realizes
the A2PAKE functionality and prove it secure against static adversaries in the universal
composability framework of Canetti [9]. The main ingredient of our protocol is a dis-
tributed oblivious pseudo-random function (TOPRF) introduced by Jarecki et al. [22].
Roughly speaking, the user inputs their password to the TOPRF protocol to derives a
long-term secret key for a signature scheme, which public key was previously certified
by the two servers. Once the long-term key is available to the user, we achieve forward-
security by running a distributed key-generation protocol so the user obtains a fresh
key-pair that she certifies using their long-term key. We defer more details on how we
can provide auditability to Section 5.

Implementation. As our last contribution, we provide a prototype implementation writ-
ten in Python and present the results of an evaluation carried out to assess throughput,
latency, and communication overhead. We defer more details to Section 6.

A note on identities. We note that auditing a protocol transcript—i.e., ascribing a public
key to an identity—requires establishing and verifying user “identities”. In other words,
each user registering to the system must prove her identity, so that key-pairs created us-
ing A2PAKE can be later attributed to such identity. In our solution, this requirements
translate to a registration phase that runs over an authenticated channel; nevertheless,
all communication after the registration phase uses unauthenticated channels. We note
that many password-based protocols require authenticated channels during user regis-
tration [23,31]. Our protocol is, however, agnostic to how the identity of the registering
user is established. For example, identities could be bound to an ID by asking the user

3



to submit a copy of her ID during registration [19,30]. If the registering user holds an
eIDs, it can be used to sign the registration transcript with a smart-card reader attached
to a PC [12]. Later on, during auditing, a public key can be ascribed to the holder of
the ID (or eID) used during registration. Another option would be for users to register
with an email address: during registration, the user must prove ownership of an email
address (e.g., by receiving a one-time code in her inbox). During auditing, a public key
can be attributed to the holder of the email address used during registration. In a simi-
lar fashion, identities can be verified by means of mobile phone numbers and one-time
codes sent via SMS messages.

2 Related work

There is a vast literature on password-based cryptography. The basic idea is to design
protocols with strong cryptographic guarantees by relying solely on low-entropy pass-
words.

The popular PKCS#5 [32] standard shows how to use passwords to derive symmet-
ric keys to be used for (symmetric) encryption or message authentication. Password-
Authenticated Key Exchange (PAKE) [4,5] enables two parties, holding the same pass-
word, to authenticate mutually and to establish a symmetric key. In the client-server
settings, compromise of the password database at the server may be mitigated by split-
ting passwords among multiple servers, typically in a threshold manner [25,26,27].

Password-Authenticated Public-Key Encryption (PAPKE) [6] enhances public-key
encryption with passwords. In particular, generation of a key-pair is bound to a pass-
word and so is encryption. Hence, decryption of a ciphertext reveals the original mes-
sage only if the password used at encryption time matches the one used when the public
key was generated. Thus, PAPKE preserves confidentiality despite a man-in-the-middle
that replaces the public key of the receiver (as long as the adversary does not guess the
receiver’s password when generating its public key). Password-based signatures were
proposed in [16] where the signature key is split between the user and a server and the
user’s share is essentially their password—so that the user can create signatures with
the help of the server. We note that in [16] the server does not authenticate users and
that it could recover the full signing key of any user by brute-forcing the password.
User authentication and resistance to brute-force attacks for password-based signatures
were introduced in [7], that requires users to carry a personal device such as a smart
card. Password-hardening services [14,28,29,34] enable password-based authentication
while mitigating the consequences of password database leak. The idea behind these is
to pair the authentication server with a “cryptographic service” that blindly computes
(keyed) hashes of the passwords. The password database at the authentication service
stores such hashes so that a leak of the database does not reveal passwords, unless the
key of the cryptographic service is also compromised. PASTA by Agrawal et al. [1] and
PESTO by Baum et al. [3] propose password-based threshold token-based authentica-
tion where the role of an identity provider in a protocol such as OAuth 4 is distributed
across several parties and the user obtains an authentication token only by authenticat-

4 https://oauth.net/

4

https://oauth.net/


ing to a threshold number of servers; both protocols are based on threshold oblivious
pseudo-random functions [22].

To the best of our knowledge, the closest cryptographic primitive to A2PAKE is
Password-Protected Secret Sharing [2,8,20,21,22]. PPSS allows users to securely store
shares of a secret—e.g., a cryptographic key— on a set of servers while reconstruc-
tion is only feasible by using the right password or by corrupting more than a given
threshold of servers. In principle, PPSS may be used to design a password-based sig-
nature scheme (without auditability or forward-security) as follows. During the PPSS
registration phase, a user generates a key-pair and secret-shares the signing key across
the participating servers. During the PPSS reconstruction phase, that user inputs their
password to recover the signing key; the latter could be used to produce signatures that
can be verified by whoever holds the corresponding verification key. This design has,
however, a number of shortcomings. First, the PPSS functionality [20] does not authen-
ticate users: as shown in [11], lack of user authentication provides a bigger surface for
online guessing attacks as the server cannot distinguish adversarial attempts to guess a
password from a request to reconstruct the secret by a legitimate user. Similarly, PPSS
does not account for auditability. Finally, using PPSS to recover a signing-key does
not provide forward-secrecy. That is, if a password is leaked the adversary could forge
signatures also for past sessions. Our definition of A2PAKE explicitly allows the main
server to authenticate the user, caters for auditability, and ensures forward secrecy.

Looking ahead, we notice that our protocol realizing A2PAKE makes use of an
authenticated channel for the registration phase and of a TOPRF, also used in the pro-
tocol realizing the PPSS proposed in [21]. Indeed, with some adjustments we could
have based our protocol on the PPSS functionality directly, instead of the combination
of TOPRF and authenticated channels. However, this might hide an important design
choice of our scheme (i.e., the need of an authenticated channel at registration time)
without significantly simplifying the proof of security. In our opinion, the protocol pre-
sented using OPRF and authenticated channels as primitives is more clear and easy to
understand.

3 Preliminaries

Digital Signatures. A signature scheme is a triple of probabilistic polynomial time
algorithms (KGen, Sign,Vf). We consider the standard notion of correctness and exis-
tential unforgeability under chosen-messages attacks [17].

NIZK Proof of Knowledge. A non-interactive zero-knowledge (NIZK) proof sys-
tem for a relation R is a tuple NIZK = (Init,P,V) of PPT algorithms such that:
Init on input the security parameter outputs a (uniformly random) common reference
string crs ∈ {0, 1}λ; P(crs, x, w), given (x,w) ∈ R, outputs a proof π; V(crs, x, π),
given instance x and proof π outputs 0 (reject) or 1 (accept). In this paper we con-
sider the notion of NIZK with labels5, that are NIZKs where P and V additionally

5 In our protocol the client sends a NIZK proof-of-knowledge of discrete log, to avoid that the
adversary re-uses such proofs in different protocol executions we label the NIZKs using the
session identifiers of the protocol executions.

5



take as input a label L ∈ L (e.g., a binary string). A NIZK (with labels) is cor-
rect if for every crs ∈$ Init(1λ), any label L ∈ L, and any (x,w) ∈ R, we have
V(crs, L, x,P(crs, L, x, w)) = 1. We consider a property called simulation-extractable
soundness. Roughly speaking, the definition of simulation extractable soundness as-
sumes the existence of a Init algorithm that, additionally to the common reference
string, outputs a simulation trapdoor tps that allows to simulate proofs, and a extraction
trapdoor tpe that allows to extract the witness from valid (no-simulated) proofs. The se-
curity guarantee is that, even in presence of an oracle that simulates proofs, an adversary
cannot produce a valid proof that cannot be extracted. Further we require the NIZK to
be adaptive composable zero-knowledge—by now the standard zero-knowledge notion
for NIZK, first considered by Groth [18].

Universal Composability. We use the Universal Composability model (Canetti [9]) to
define security. As opposed to other game-based definitions, the simulation-based secu-
rity offered by the UC model allows to formulate security statements that do not need
to make any assumptions on the distribution of the passwords (see Canetti et al. [10]
for further discussion). We review some basic notions of the UC model. In a nutshell,
a protocol Π UC-realizes an ideal functionality F with setup assumption G if there
exists a PPT simulated adversary B∗ (also called the simulator) such that no PPT envi-
ronment Z can distinguish an execution of the protocol Π which can interact with the
setup assumption G from a joint execution of the simulator B∗ with the ideal functional-
ity F . The environment Z provides the inputs to all the parties of the protocols, decides
which parties to corrupt (we consider static corruption, where the environment decides
the corrupted parties before the protocol starts), and schedules the order of the messages
in the networks. When specifying an ideal functionality, we use the “delayed outputs”
terminology of Canetti [9]. Namely, when a functionality F sends a public (resp. pri-
vate) delayed output M to party Pi we mean that M is first sent to the simulator (resp.
the simulator is notified) and then forwarded to Pi only after acknowledgement by the
simulator. We sometimes say the ideal functionality F registers the tuple X (resp. re-
trieves X), in this case we assume that the ideal functionality is stateful and keeps an
internal database where stores all the registered tuples.

4 A2PAKE

We start by recalling the settings and high-level goals of our primitive. We assume a
number of clients {C1, . . . , Cn}, and two servers S1,S2. 6

The goal is to design a password-only protocol that allows clients to obtain a key-
pair that can be used, e.g., to sign messages. Server S1 is designated as the “main”
server. It is the one that learns the client’s public key as output by the protocol—so it
can verify messages signed by the client. The other server is designated as “support”
server and helps the main one to authenticate clients and, most importantly, to produce
auditing evidence.

6 For simplicity, we consider only the two-server scenario, and leave the extension of the ideal
functionality to more than two servers as future work.

6



Functionality FA2PAKE:

The functionality interacts with clients C1, . . . , Cn, two servers S1 and S2, an auditorA, and an adver-
sary B.

Registration: On (register, sid, pw) from Cj .
If there is no record of the form (sid, Cj , ∗) ∈ Dpw then create a fresh record (sid, Cj , pw) in Dpw.
Send delayed output (registered, sid, Cj) to S1, S2.

Init: On (init, sid, j, qid, pw) from a party P ∈ {Cj ,S1,S2}: //pw is empty if P ∈ {S1,S2}
Send (init, sid, j, qid,P) to B.
Record that P initialized the session.
If Cj ,S1 and S2 initialized the session, then record the session (sid, j, qid) is active for S1 and Cj .
If P = Cj and (sid, Cj , pw) 6∈ Dpw then record the session (sid, j, qid) is invalid and notify the
adversary.
Sample (pk, sk) ∈$ KGen(1λ) and register (sid, j, qid, sk, pk).
If (corrupt(sid, j)∨Cj ∈C) then send (sid, j, qid, pk, sk) to the adversary, else send (sid, j, qid, pk).

Test Password: On (test, sid, j, qid, pw′) from B.
Assert S1 and S2 have initialized the session (sid, j, qid) or S1,S2 ∈ C.
If (sid, Cj , pw′) ∈ Dpw then reply B with correct and set corrupt(sid, j)← 1,
else set the session (sid, j, qid) as invalid and reply B with wrong.

New Key: On message (newkey, sid, j, qid,P, p̃k, s̃k) from B.
Assert P ∈ {Cj ,S1} and that session (sid, j, qid) is active for P;
Mark session (sid, j, qid) for P as finalized;
If P ∈ C ∨ corrupt(sid, j) then set (pk, sk) :=(p̃k, s̃k) else retrieve (sid, j, qid, pk, sk).
If the session (sid, j, qid) is invalid set pk = ⊥,
if P = S1 and session valid then register (sid, qid, Cj , pk) in Dpk;
If P = S1 then send (output, sid, j, qid, pk) to S1;
If P = Cj then send (output, sid, j, qid, sk) to Cj ;

Invalid: On message (invalid, sid, j, qid,P) from B and P ∈ {Cj ,S1}.
Send (output, sid, j, qid,⊥) to P and mark the session finalized for P .

Audit: On message (audit, sid, qid, j, pk) from party S1.
NON-FRAMEABILITY. If Cj ,S2∈H ∧¬corrupt(sid, j) ∧ (sid, qid, Cj , pk) 6∈Dpk then set b← 0.
NON-REPUDIABILITY. If S1 ∈ H ∧ Cj ∈ C ∧ (sid, qid, Cj , pk) ∈ Dpk then set b← 1.
All other cases wait for a bit b′ from the adversary B and set b← b′.
Send to the auditor A the message (audit, sid, qid, j, pk, b).

Fig. 1: Ideal Functionality FA2PAKE

Obtained key-pairs should be forward secure, i.e., leakage of a password should not
compromise key-pairs computed before leakage took place. Further, the protocol should
be audible. That is, any third party should be able to tell, given a protocol transcript π
and the corresponding public key pk, if the protocol execution went through correctly
and should be able to ascribe the public key to the user, say u, involved in π. Thus,
if signatures verify with respect to the public key pk, then u cannot repudiate signed
messages.

The ideal functionality that realizes A2PAKE, namelyFA2PAKE, is depicted in Fig. 1.
The functionality is parameterised by a security parameter λ and an asymmetric public

7



key generation algorithm KGen. It receives from the environment the set C of corrupted
parties. Let H be the set of honest parties (that is, the complement of C). Let Dpk (resp.
Dpw) be the database of the completed sessions (resp. of registered passwords). Both
Dpk and Dpw are initialized to empty.

The Registration interface allows a client to register her passwords pw. Notice that,
even if both servers are corrupted, the password is not leaked. Similarly to the notion of
strong asymmetric PAKE [24], the only way for an attacker to leak the password is by
using the “test password” interface. Note that each password is registered together with
a sid and an identifier for the client, which will thereafter thus be used as an identifier
for the password that is linked to the client after registration.

Any party can initialize a session via the Init interface. In case Init is called by a
client, it must also submit her password; in case the password has not been registered,
the session is marked as invalid. Once a client and the two servers have initialized the
same session (identified by qid), the session is marked as active and a fresh key pair is
sampled, if either the password or the client are corrupted then the secret key is revealed
to the adversary. Note that qid is actually an identifier linked to a concrete signing key
generation session; the complete tuple sid‖qid‖j will be used later as a global session
identifier (for instance, as input to the Audit phase.)

The ideal functionality needs inputs from both servers whenever the adversary uses
the Test Password interface, which captures password guessing attacks. That is, the
adversary must wait that the honest server initializes a new session to be able to test a
password during such session), therefore: (i) if at least one of the server is honest then
only “online” brute-force attacks on the password are possible; (ii) if both servers are
corrupted then the attacker can carry out “off-line” brute-force attack on the password.
The latter property requires the simulator of our protocol, playing the role of the ideal-
model adversary, to be able to detect off-line password tests made by the real-world
adversary. However, when both the servers are corrupted, the adversary can carry out
the tests locally, namely without sending any message. Thus, this seems to require a
non-black-box assumption which would allow the simulator to extract a password test
from the adversary. PAKEs based on OPRFs, such as [24], face similar extractability
issues. To the best of our knowledge, the random oracle model offers the most natural
solution to these issues.

The New Key interface accepts inputs from the adversary of the form

(newkey, sid, j, qid,P, s̃k, p̃k).

As a result, a signing key pair will be registered for client j linked to the corresponding
identifier sid, j, qid. This new key generation can be influenced by the adversary in
different ways: (1) it can decide when the parties receive the outputs, as we assume that
the adversary has complete control over the network, (2) when the client is corrupted or
its password is corrupted (resp. the server is corrupted) then the adversary can decide the
outputs of the functionality for the client (resp. the server). In this case the output of the
client Cj (resp. the corrupted server) at session (sid, qid, j) is s̃k (resp. p̃k). We stress that
this is unavoidable when the parties are corrupted, as the adversary has full control of
them, and thus of their outputs. When the password is corrupted but the client is honest,
for simplicity, we let the adversary decide the output of the client anyway because the

8



security properties of our functionality cannot be guaranteed, since the adversary could
impersonate the client.

Notice that by design, the functionality guarantees a form of forward-secrecy for
the generated secret keys: even if a client password is leaked by the adversary, the key-
pairs output before password leakage took place are still unknown to the adversary.
We elaborate further on this at the end of this section. Also notice that the ideal func-
tionality registers the key-pair in the database of key-pairs only when the server S1 is
honest. Indeed, when the server S1 is corrupted, it can always deny to have executed
the protocol.

Finally, the ideal functionality assures non-frameability and non-repudiablity. For
the former, an auditor cannot be convinced that a public key belongs to an honest client
if that client did not actually produced the key-pair jointly with the servers. This holds
as long as the password of the client is not corrupted. We stress that both servers could
be malicious but still cannot frame the client, if, for example, the password of the client
has high-entropy. For non-repudiability, an honest server with a transcript of an execu-
tion with a (possibly malicious) client, can always convince the auditor that the secret
key matching the public key in the transcript belongs to that client. Technically, both
non-frameability and non-repudiability are enforced by the ideal functionality by main-
taining the database Dpk of the registered public keys. For non-frameability, the ideal
functionality makes the auditor A output 0 whenever the client is honest (and the its
password is not leaked) and the alleged public key is not present in the database of
the registered public keys. For non-repudiability the ideal functionality makes the au-
ditor output 1 whenever the server is honest and the tuple client/associated public key
is present in database (with the corresponding sid‖qid tags). In all the other cases, the
adversary can set the output as it prefers. The reason is that non-frameability is a prop-
erty aiming to protect an honest client, while non-repudiability cannot hold when a
malicious server refutes to engage in the audit protocol.

A note on forward-secrecy. As we mentioned, the functionality FA2PAKE guarantees
a form of forward-secrecy, as key-pairs output before password leakage took place are
still private. Yet, as our envisioned use of the functionality is to generate keys for a
digital signature scheme, forward-secrecy alone would not be enough to prevent an ad-
versary from “back-dating” a signature. In particular, an adversary that has learned the
password of a honest client at time t, may still obtain a fresh key-pair, and sign messages
with an arbitrary date (e.g, earlier than t). As in any forward-secure signature scheme,
we need a mechanism to bound a key-pair to an “epoch”, so that only signatures that
verify under the public key of the current epoch are considered valid. Such mechanism
may be realized using the field qid of the command init of the functionality. In partic-
ular, some well-defined bits of qid could be used to encode the current epoch—notice
that the three parties Cj ,S1 and S2 must agree on the qid (thus the epoch) to successfully
conclude a key generation and that the generated public key is binded to qid. Finally,
the verification procedure of the signature scheme would have to check the association
between the public key and the epoch, which we can achieve using the audit interface
offered by the functionality.

Our functionality can guarantees forward-secrecy even when both the servers are
corrupts. The main reason is that our functionality assumes that only the clients can

9



Functionality FTOPRF:

The functionality is parametrized by a positive integer t and runs with a client C servers S1,S2, and an
adversary A. It maintains a table T (·, ·) initialized with null entries and a vector tx(·) initialized to 0.

Initialization:
– On (Init, sid) from Si, i ∈ {1, 2}
• send (Init, sid, Si) to the adversary A,
• mark Si active.

– On (Init, sid,A, k) from A
• check that k is unused and k 6= 0
• record (sid,A, k)
• return (Init, sid,A, k) to the adversary A.

– On (InitComplete, sid, Si) for i ∈ {1, 2} from the adversary A, if Si is active
• send (InitComplete, sid) to Si
• mark Si as initialized.

Evaluation:
– On (eval, sid, ssid, x) from P ∈ {C,A},
• if tuple (ssid,P, ∗) already exists, ignore.
• Else, record (ssid,P, x) and send (eval, sid, ssid,P) to A.

– On (SndrComplete, sid, ssid, i) for i ∈ {1, 2} from A
• ignore if Si is not initialized.
• Else set tx(i) := tx(i) + 1 and send (SndrComplete, sid, ssid) to Si.

– On (RcvComplete, sid, ssid,P, p∗) for P ∈ {C,A} from A,
• retrieve (ssid,P, x) if it exists, and ignore this message if there is no such tuple or if any of the following

conditions fails:
(i) if p∗ = 0 then tx(1) > 0 and tx(2) > 0,

(ii) if both servers are honest then p∗ = 0.
• If p∗=0 then set tx(1) := tx(1)−1 and tx(2) := tx(2)−1.
• If T (p∗, x) is null, pick ρ uniformly at random from {0, 1}t and set T (p∗, x) := ρ.
• Send (eval, sid, ssid, T (p∗, x)) to P .

Fig. 2: Ideal FunctionalityFTOPRF (adapted from [22]). Label 0 is reserved for the honest
execution.

register themselves. However, looking ahead in our protocol, we need to assume an au-
thenticated channel to enforce such a strong condition. We notice that if we additionally
let the adversary register the clients, we would loose forward-secrecy when the servers
are both corrupts, since the adversary could re-register a client and could produce a
valid key for the attacked client for a given epoch. The only way to avoid this generic
attack seems to carefully define forward-secrecy in our context, which we defer for
future works.

5 UC-secure protocol

5.1 Setup Assumptions

We leverage functionalitiesFAUTH,FKRK,FRO andFCRS, which model authenticated chan-
nels, key-registration, random oracle, and common reference string (see the full version
of the paper for their formal definitions). The authenticated channel is used only once

10



by each client at registration time. The key-registration functionality allows to create a
PKI between the servers and the auditor. Note that we do not need a global functionality
for the PKI functionality. Indeed, in our protocol we just need that the messages signed
by the second server could be verified by the first server during registration time and
by the auditor to achieve non-repudiation. We need a common reference string for the
NIZK that we make use of, while we use FRO for the coin-tossing part of our protocol.

Additionally and more crucially, we use a threshold oblivious pseudo-random func-
tion, formalized by the ideal functionality FTOPRF. In Fig. 2, we present a simplified
version of the functionality of Jarecki et al. in [22] which fits our purpose. The ideal
functionality FTOPRF produces uniformly random outputs, even in case of adversarial
choice of the involved private key and also maintains a table T (·, ·) storing the PRF
evaluations and a counter vector tx(·) for each server, used to ensure the involvement
of the 2 servers on each completed evaluation. In particular, note that in Fig. 2 the ad-
versary may initialize servers with a fixed key of his choice through Init or without
choosing the key himself (using InitComplete). The counter is thus controled by him
through SndrComplete, while the PRF evaluation is completed (and possibly sent to
the client) in RcvComplete.

Our protocol makes use of the multi-session extension of the ideal functionality
FTOPRF (that we identify with the hatted functionality F̂TOPRF). When the functional-
ity F̂TOPRF is called we thus include a sub-session identifier ssid. Specifically, on input
(sid, ssid,m) to F̂TOPRF, the functionality first checks there is a running copy of FTOPRF

with session identifier ssid and, if so, activates that copy with message m. Otherwise,
it invokes a new copy of FTOPRF with input (ssid,m), and links to this copy the sub-
session identifier ssid. For further details, see [9]. In our concrete usage (see Figs. 3
and 4) there are two layers of executions: the client’s index (j) is used as the sub-session
identifier when calling F̂TOPRF (thus in the protocol each client uses a different instance
of FTOPRF); the query identifier qid (used in the command init of FA2PAKE), is used as
the sub-sub-session identifier when calling F̂TOPRF.

5.2 Generic description of our protocol

An high-level description of our protocol realizingFA2PAKE from the setup assumptions
FRO,FAUTH,FKRK,FTOPRF and FCRS is given in Figs. 3 to 5. The protocol consists of three
phases: registration, in which the client registers with the two servers, authentication, in
which the client and the server S1 produce a fresh and authenticated key pair, and audit,
in which the server can prove to the auditor the relation between clients and public keys.

At registration of a new client, the servers initialize a new fresh instance of FTOPRF

by calling F̂TOPRF with sub-session identifier the index relative to the client. Then, the
client and the two servers run the F̂TOPRF (on sub-sub-session identifier a special string
signup used for registration), where the client’s private input is the password whereas
each server uses its secret key share as private input. The client receives the evaluation
of the OPRF that is parsed as a secret key sk∗ ∈ Zq for a DLOG-based signature
scheme 7. The client, using the interfaces provided by FAUTH, can send an authenticated

7 The choice of the signature scheme is arbitrary and taken for the sake of simplicity. In-
deed, with minor modifications to the protocol we could use any EUF-CMA secure signature
scheme.

11



Registration Phase

Protocol for Client Cj :

– On (register, sid, pw)
• send (eval, sid, j, signup, pw) to F̂TOPRF

• send (CRS, sid, Cj) to FCRS

• Wait to receive:
* (CRS, sid, crs) from FCRS

* (eval, sid, j, signup, ρ) from F̂TOPRF

• set pk∗ = gρ and sk∗ = ρ
• send (round1− reg, sid, j, pk∗) using FAUTH to S1 and S2

Protocol for Server S1:

– On (register, sid, j)
• send (Init, sid, j) to F̂TOPRF,
• send (CRS, sid, Cj , S1) to FCRS

• wait to receive:
* (CRS, sid, crs) from FCRS

* (InitComplete, sid, j) from F̂TOPRF

* (SndrComplete, sid, j, signup) from F̂TOPRF

* (round1− reg, sid, j, pk∗) from FAUTH

* (round2− reg, σ2) from S2
• assert Vf(pk2, sid‖j‖pk∗, σ2)=1 and store (sid, j, pk∗, σ2)

Protocol for Server S2:

– At first activation
• sample s2 ∈$ Zq
• send (register, sid, s2) to FKRK

– On (register, sid, j)
• send (init, sid, j) to F̂TOPRF

• wait to receive:
* (InitComplete, sid, j) from F̂TOPRF

* (SndrComplete, sid, j, signup) from F̂TOPRF

* (round1− reg, sid, j, pk∗) from FAUTH

• compute σ2 ← Sign(sk2, sid‖j‖pk∗)
• send (round2− reg, σ2) to S1.

Fig. 3: Part of the protocol realizing the registration phase of the functionality FA2PAKE

message to both servers with the public key pk∗ = gsk
∗
. We notice that using the FAUTH

setup assumption for the last step is necessary, to bind a client identity with public key
pk∗, moreover, this is the only step where we use an authenticated channel. Finally,
the server S2 signs the public key pk∗ produced and sends such signature to S1, thus
witnessing the successful registration of the client.

During authentication, a registered client and the two servers run again the instance
of the FTOPRF associated to the client. Once again, the secret input of the client is a
password whereas each server inputs the secret key share picked during registration.
Thus, the client recovers the secret key sk∗. Concurrently, client and server run a simple

12



Authentication Phase

Protocol for Client Cj :

– On (init, sid, j, qid)
• set sid′ := (sid‖qid‖j)
• sample xC ← Zq and set yC ← gxC

• compute π ← P(crs, sid′, yC , xC)
• send (RO, sid′‖yC‖π), receive (RO, h) from FRO

• send (round1, sid′, h)
– On (round2, sid′, xS) from S1
• set pk = gxC ·xS

• compute σC ← Sign(sk∗, sid′‖pk)
• send (round3, sid′, yC , π, h, pk, σC) to S1
• output sk = xC · xS

Protocol for Server S1:

– On (init, sid, j, qid),
• set sid′ := (sid‖qid‖j)
• wait to receive (SndrComplete, sid, j, qid) from F̂TOPRF

• sample xS ∈$ Zq
• send (round2, sid′, xS) to Cj .

– On (round3, sid′, yC , π, h, pk, σC) from Cj
• assert the output (RO, h′) of FRO on input (sid′‖yC‖π) fulfills h′ = h
• assert V(crs, sid′, yC , π) = 1
• assert Vf(pk∗, sid′‖pk, σC) = 1
• assert pk = yxSC
• register the tuple (sid, qid, j, pk)

Protocol for Server S2:

– On (Init, sid, qid, j),set sid′ :=(sid‖qid‖j), wait to receive (SndrComplete, sid, j, qid) from F̂TOPRF

Fig. 4: Part of the protocol realizing the authentication of FA2PAKE.

coin-tossing protocol to produce a DLOG key pair. Such protocol ensures randomly
generated keys. Additionally, the last message of the client, which defines uniquely the
key-pair, is authenticated with a signature under the key pk∗. Server S1 accepts the
public key only if it were correctly generated by the client and the signature on that
public key verifies under key pk∗.

At auditing time, if server S1 wants to prove that a public key pk belongs to a
client Cj , the server can simply show to the auditor (1) the signature received by S2 at
registration time on pk∗ and the client’s identity j, and (2) the signature received by
the client at authentication time on pk. In this way the auditor checks that S2 witnessed
the registration of pk∗ by client C, and that pk was certified by pk∗. More in detail, the
auditor checks that σC is a valid signature of sid‖qid‖j‖pk under key pk∗, and that σ2
is a valid signature of the message sid‖j‖pk∗ under key pk2—the public key of S2. If
both checks succeed, the auditor concludes that pk belongs to client C.

Theorem 1. Let KGen be the algorithm that upon input the description of a group
outputs pk = gsk and sk ∈$ Zq . The protocol described in Figs. 3 to 5 UC-realizes

13



Audit Phase

Protocol for Server S1:

– On (audit, sid, qid, j)
• retrieve (sid, j, pk∗, σ2) and (sid, qid, j, pk, σC)
• send (audit, sid, qid, j, pk∗, σ2, pk, σC) to A

Protocol for Audit A:

– On (audit, sid, qid, j, pk∗, σ2, pk, σC) from S1
• send (retrieve, sid,S2) to FKRK and receive (sid,S2, pk2)
• compute b0←Vf(pk2, sid‖j‖pk∗, σ2) b1←Vf(pk∗, sid‖qid‖j‖pk, σC)
• output b0 ∧ b1

Fig. 5: Part of the protocol realizing the audit of FA2PAKE.

the ideal functionality FA2PAKE parametrized by KGen against static adversaries with
setup assumptions FRO,FAUTH,FKRK,FCRS and F̂TOPRF.

We give some intuitions behind the proof the formal proof is in the full version [15].
To prove security we need to show a simulated adversary B∗ that interacts with the
ideal functionality FA2PAKE and an environment Z , such that the environment cannot
distinguish such interaction with an interaction with the real protocol. First we show
how non-frameability and no-repudiability are guaranteed in the real world as they are
in the ideal world.

Non-Frameability. Suppose that Z instructs the corrupted server S1 to engage the au-
dit phase, Z feeds the server with an input (sid, qid, Cj , p̃k) and the client Cj is honest.
Moreover, the public key p̃k was never produced as the output of an interaction between
the client Cj and the servers. Thus, unless the password of the client Cj was corrupted,
in the ideal world, the auditor will surely output 0. We claim that, unless the password
of the client was corrupted, also in the real world, the auditor will output 0 with over-
whelming probability. The reason is that, by the security of the FTOPRF the secret key
sk∗ = TOPRF(pw) associated to the client Cj is known only by the honest client Cj .
Notice that, not even the environment knows the secret key since it does not have direct
access to the outputs of FTOPRF during a protocol execution. However, the environment
could send an eval commands to the OPRF (for example through a man-in-the-middle
attack) with the password of the client and obtain the secret key. In this case our simu-
lator sends the same password to the test interface of FA2PAKE, and in case of a correct
guess reveal the secret key of the signature scheme to the environment. Thus the envi-
ronment gets to know the secret key only when the password is corrupted. In the case
where the password was not corrupted the environment does not know the secret key,
the only way to make the auditor accept is to forge a signature, which we can reduce to
the existential unforgeability of the signature scheme.

Non-Repudiability. The honest server can make the auditor output 1 in the real world
by sending a valid signature on the tuple client/public key. In the ideal world, the auditor
outputs 1 if the tuple was registered by the ideal functionality. Thus, the simulator needs

14



to enforce that a new public key is recorded in the database of the public key of the ideal
functionality only when the malicious client sends the message round3 which contains
a valid signature on the client-public-key tuple.

Equivocate, Extract Inputs and Simulate Key Generation. Equivocate and extract
the inputs during registration phase is rather straightforward. Indeed, the inputs of the
clients are directly sent to the ideal functionality FTOPRF. The most interesting part is to
make sure the key pair output by the ideal functionality FA2PAKE does agree with the
transcript generated by the simulator. Recall that in this part of the protocol first the
client sends h = RO(sid′‖yc‖π), then the server sends xS and finally the client sends
(yc, π). When the client is honest and the server S1 is malicious, the simulator chooses
the value yC adaptively once received both the message xS from the server and the
public key from the ideal functionality. Notice it can do so by programming the random
oracle and by simulating the NIZK of knowledge of xC . When the client is malicious
and the server S1 is honest, we can extract the value xC from the client thanks to the
extractability of the NIZK and the observability of the random oracle, and then simulate
xS setting it to be sk− xC .

5.3 Concrete instantiation

We now describe a concrete instantiation of FA2PAKE that generated DLOG-based key-
pairs and that is based on the 2HashDH instantiation of FTOPRF, presented in [22]. For
concreteness, we use the same cyclic group to generate key-pairs as output by FA2PAKE

and to instantiate the underlying distributed OPRF.
Let G be a cyclic group of prime order p with generator g. Also let H , H1, and H2

be three hash functions ranging over {0, 1}`, G, and Zq , respectively. Given an input
x and a key k from Zq, function fk(x) is defined as H2(x,H1(x)

k) (where key k is
shared among the servers). Fig. 6 describes the full protocol. Note that, for clarity, Fig. 6
assumes a direct communication channel between S1 and S2. In a real deployment
scenario those two parties may not have a long-lasting connection and the client may
proxy messages from one server to another; the latter settings is the one we have used
in the evaluation of Section 6. We substitute the index j of the client from the generic
description of the protocol with a unique username. During registration, client C and
servers S1, and S2, run the OPRF protocol. The private input for the client is password
pw, while the private input for server Si is a freshly sampled key share ki (for i ∈
{1, 2}). The private client’s output is set as its secret key sk∗ with corresponding public
key pk∗. The public key is sent by the client to both servers via an authenticated channel
so that pk∗ can be bound to a client identity. We do not specify how this channel should
be implemented and gave a few examples in Section 1. One option is for the client to
sign pk∗ with its digital ID so to bound the public key to an ID number. Server S2
signs the public key received by the client and provides S1 with the signature—thereby
providing a witness of a correct client registration. At the end of the registration, the
user must only remember username C and password pw; S2 remembers the client’s
username and the key-share k2, whereas S1 stores the tuple (C, k1, pk∗, σ2). During
authentication, the distributed OPRF protocol is run (as during registration) so that the
client can recover sk∗. We consider the audit phase as a non-interactive procedure where

15



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Registration phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C(sid, pw) : S1(sid, pk2) : S2(sid, sk2) :

r ∈$ Zq, a←H1(pw)
r k1 ∈$ Zq k2 ∈$ ZqC, a

b1←ak1 b2←ak2
b1

b2
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sk∗←H2(pw‖(b1b2)1/r)

pk∗←gsk
∗

Erase sk∗, r pk∗ M := sid‖C‖pk∗

σ2←Sig(sk2,M)

M := sid‖C‖pk∗ σ2 Store 〈sid, C, k2〉
Assert Vf(pk2,M, σ2) = 1

Store 〈sid, C, k1, pk∗, σ2〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Authentication phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C(id, crs, pw) : S1(id, crs, pk2) : S2(id, sk2) :

xC , r ∈$ Zq, yC←gxC

π←P(crs, id, xC , yC)

h←H(id‖yC‖π)
a←H1(pw)

r C, a, h Retrieve 〈sid, C, k1, pk∗〉 Retrieve 〈C, k2, pk∗〉
b1←ak1 , xS ∈$ Zq b2←ak2

b1, xS
b2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sk∗←H2(pw‖(b1b2)1/r)

sk←xS · xC , pk←gsk

σC←Sig(sk∗, id‖pk) pk, σC , yC , π

Erase sk∗, xC , r Assert Vf(pk∗, id‖pk, σC) = 1

Output sk Assert h=H(id‖yC‖π)
Assert pk=yxSC
Assert V(crs, id, yC , π) = 1

Output (id, pk)

. . . . . . . . . . . . . . . . . . . . . Audit phase . . . . . . . . . . . . . . . . . . . . .

A(pk2, (id, pk), Π) :

Parse Π = (σ2, pk
∗, σC) and id = (sid, C, qid)

return Vf(pk2, sid‖C‖pk
∗, σ2) ∧ Vf(pk∗, sid‖qid‖C‖pk, σC)

Fig. 6: Concrete instantiation of A2PAKE. Dashed arrows depict broadcast messages. The dotted
arrow in the registration phase denotes an authenticated channel. In the authentication phase the
three parties receive in input an identifier id = (sid, C, qid).

the auditor takes in input the public key of the server S2, the tuple (id, pk) describing
the client and its public key and a proof Π that pk is indeed its public key.

16



A note on forward-secrecy. The protocol of Fig. 6 realizes FA2PAKE, thereby guaran-
teeing forward-secrecy: even if a user password is leaked, key-pairs output by execu-
tions of the authentication protocol before password leakage took place are still secure.
As in other protocols that ensure forward-secrecy, e.g., [33], forward-secrecy alone is
not enough to prevent an adversary from “back-dating” a signature. That is, a notion of
“time” is needed to decide whether a signature can be considered valid. For example, in
our application scenario, an adversary that has learned the password of a honest client
at time t, may still run the authentication protocol on behalf of the client, obtain a fresh
key-pair, and sign messages with arbitrary timestamps (e.g, earlier than t). As in any
forward-secure signature scheme, we need a mechanism to bound a key-pair skt, pkt
to an “epoch” t, so that only signatures that verify under the public key of the current
epoch are considered valid. This could be achieved in many ways. For example, the
client may upload key-pairs to a public and timestamped bulletin board or blockchain.
Alternatively, during the authentication protocol when the client uses sk∗ to sign id‖pk,
it may include a timestamp ts and send the signature to both servers. Hence, S2 checks
that ts is valid, checks that the signature verifies under pk∗, and sends its own signature
over id‖pk‖ts to party S1, thereby acting as a timestamping authority that binds pk to
timestamp ts.

6 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250

T
h
ro

u
g

h
p

u
t 

(c
lie

n
ts

/s
e
co

n
d

)

Number of Concurrent Clients

A2PAKE
baseline

(a) Throughput.

 0

 0.5

 1

 1.5

 2

 2.5

 0  50  100  150  200  250

La
te

n
cy

 (
se

co
n
d

)

Number of Concurrent Clients

A2PAKE
baseline

(b) Latency.

Fig. 7: Comparison of A2PAKE versus the baseline protocol over WAN.

We implemented a prototype of the A2PAKE instantiation presented in the previ-
ous section. The prototype was written in Python with the Charm-crypto8 library for
cryptographic operations. We instantiated ECDSA over elliptic curve prime192v1
as the digital signature scheme; thus signature generation and verification take one and
two point multiplications, respectively. Further each signature amounts to two elements
in Zq . We used the same curve to instantiate the 2HashDH [22] distributed OPRF.
Random oracles were instantiated with SHA256.

8 http://charm-crypto.io/

17

http://charm-crypto.io/


Theoretical overhead. We now provide a theoretical evaluation of the computation
and communication overhead of the protocols in Fig. 6. For elliptic curve operations, we
only report the number of point multiplications (mults), including there the computation
of multiples of a given point. During registration, the client computes 4 mults and 2
hashes. Apart from a username, the client sends two group elements and a signature.
This signature is the one that S2 sends to S1 at the end of the registration protocol in
Fig. 6; we decide to use the client as a proxy between the two servers because in a real
deployment the two servers will not likely have a long-lasting connection (and may not
even know their end-points). During authentication, the client computes 6 mults, one
signature and 3 hashes. Apart from a username, the client sends 3 group elements, a
signature, a proof of knowledge of discrete log (one group element and one element in
Zq), and one hash. At registration time, server S1 computes a single exponentiation and
verifies the validity of a signature; it sends one group element. During authentication,
S1 computes one exponentiation and one hash. It also verifies a signature and a proof-
of-knowledge of discrete log (two mults). S1 sends one group element and one element
in Zq . During registration, server S2 computes one exponentiation and one signature; it
sends one group element and a signature (to the client that will forward it to S1). During
authentication, S2 computes one exponentiation and sends one group element.

Baseline comparison. As a baseline comparison for A2PAKE, we implement a simple
client-server protocol that allows the server to authenticate the client and both of them
to generate an asymmetric key pair—where the secret key is only learned by the client.
In particular, client and server run a distributed coin-tossing protocol similar to the one
of Fig. 6 (e.g., the client sends gxC for random xC , the server sends random xS , the
client sets sk = xC · xS and pk = gsk). Further, the client derives a MAC key from
the password (by using PBKDF2) and authenticates the public key pk. The server uses
the password to derive the same MAC key and accepts pk only if the MAC sent by the
client is valid. Note that such protocol does not ensure non-repudiation (since either
party could have created and MACed a key-pair), but it is a straightforward example of
how to authenticate clients and create fresh key-pairs by using passwords.

Experiments. We setup the two servers on two Amazon EC2 machines (t3a.2xlarge
instances) and use four laptops (Intel i7-6500U, 16GB RAM) to instantiate clients.
With this setup at hand, we measure latency and throughput for A2PAKE and for the
baseline protocol. In particular, we send a number of concurrent client requests from the
laptops and measure the end-to-end time for a client to complete; we keep increasing the
number of requests until the aggregated throughput saturates. Figs. 7a and 7b provide
average and standard deviations for throughput and latency, respectively. In all of the
figures, one data-point is the average resulting from measuring 30 runs.

Results. As expected, latency of A2PAKE (from 0.25s with few clients up to 0.56s
right before the main server saturates) is slightly higher than the one of the baseline
protocol (from 0.18s with few clients up to 0.50s right before the server saturates).
However, the baseline protocol saturates the server with a smaller number of clients
compared to A2PAKE. Indeed, the server of the baseline protocol saturated with little
more than 10 concurrent clients. The main server of A2PAKE was able to handle up to
200 clients. A closer look at the timings showed that most of the overhead in the baseline

18



protocol is due to the PBKDF2 key derivation function. Indeed, this function is designed
to slow-down the computation, in order to discourage brute-force attacks. Replacing
this function with, say SHA256, would definitely improve the performance, but would
pose passwords at greater risk in case of compromise of the password database, and is
discouraged according to PKCS series. Using a two-server settings—as in A2PAKE—
allows us to use faster hashes like SHA256 because compromise of a single server
does make brute-force attacks any easier. We also measured the time it takes to run
the registration protocol of Fig. 6. Since this procedure is executed once per client,
we are not interested in throughput but just in latency. We use one client laptop and
two servers and measure 100 executions. Registration takes 0.14s on average (standard
deviation 0.004s); most of the time is taken by network latency, especially because the
client must proxy a signature from the secondary server to the main one.

Acknowledgements

M.I.G. Vasco is supported by research grant PID2019- 109379RB-100 from Spanish MINECO.
Antonio Faonio is partially supported by the MESRI-BMBF French-German joint project named
PROPOLIS (ANR-20-CYAL-0004-01).

References

1. Agrawal, S., Miao, P., Mohassel, P., Mukherjee, P.: PASTA: PASsword-based threshold au-
thentication. In: ACM CCS 2018. ACM Press (Oct 2018)

2. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing. In: ACM
CCS 2011. ACM Press (Oct 2011)

3. Baum, C., Frederiksen, T.K., Hesse, J., Lehmann, A., Yanai, A.: PESTO: proactively
secure distributed single sign-on, or how to trust a hacked server. In: IEEE EuroS&P.
pp. 587–606. IEEE (2020). https://doi.org/10.1109/EuroSP48549.2020.00044, https://
doi.org/10.1109/EuroSP48549.2020.00044

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dic-
tionary attacks. In: EUROCRYPT 2000. LNCS, Springer, Heidelberg (May 2000)

5. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange
using Diffie-Hellman. In: EUROCRYPT 2000. LNCS, Springer, Heidelberg (May 2000)

6. Bradley, T., Camenisch, J., Jarecki, S., Lehmann, A., Neven, G., Xu, J.: Password-
authenticated public-key encryption. In: ACNS 19. LNCS, Springer, Heidelberg (Jun 2019)

7. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: How to sign with
a password and a server. In: SCN 16. LNCS, Springer, Heidelberg (Aug / Sep 2016)

8. Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally composable two-server
password-authenticated secret sharing. In: ACM CCS 2012. ACM Press (Oct 2012)

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: 42nd FOCS. IEEE Computer Society Press (Oct 2001)

10. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally composable
password-based key exchange. In: EUROCRYPT 2005. LNCS, Springer, Heidelberg (May
2005)

11. Das, P., Hesse, J., Lehmann, A.: DPaSE: Distributed password-authenticated symmetric
encryption. Cryptology ePrint Archive, Report 2020/1443 (2020), https://eprint.
iacr.org/2020/1443

19

https://doi.org/10.1109/EuroSP48549.2020.00044
https://doi.org/10.1109/EuroSP48549.2020.00044
https://eprint.iacr.org/2020/1443
https://eprint.iacr.org/2020/1443


12. para las Administraciones Gobierno de España, I.E.: Clave firma (2019), https://
clave.gob.es/clave_Home/dnin.html

13. EU Parliament: eIDAS Regulation (Regulation (EU) N 910/2014) (2014), http:
//eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_
.2014.257.01.0073.01.ENG

14. Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The pythia PRF service.
In: USENIX Security 2015. USENIX Association (Aug 2015)

15. Faonio, A., González Vasco, M.I., Soriente, C., Truong, H.T.T.: Auditable asymmetric pass-
word authenticated public key establishment. Cryptology ePrint Archive, Report 2020/060
(2020), https://eprint.iacr.org/2020/060

16. Gjøsteen, K., Thuen, Ø.: Password-based signatures. In: 8th European Workshop on Public
Key Infrastructures, Services and Applications (EuroPKI). pp. 17–33 (2011)

17. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing (2) (Apr 1988)

18. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In: ASIACRYPT 2006. LNCS, Springer, Heidelberg (Dec 2006)

19. International, S.O.: Websignatureoffice (2019), https://www.
websignatureoffice.com/us/

20. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret sharing
and T-PAKE in the password-only model. In: ASIACRYPT 2014, Part II. LNCS, Springer,
Heidelberg (Dec 2014)

21. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable password-
protected secret sharing (or: How to protect your bitcoin wallet online). In: IEEE EuroS&P
2016. pp. 276–291. IEEE (2016)

22. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: Cost-minimal password-protected
secret sharing based on threshold OPRF. In: ACNS 17. LNCS, Springer, Heidelberg (Jul
2017)

23. Jarecki, S., Krawczyk, H., Shirvanian, M., Saxena, N.: Device-enhanced password protocols
with optimal online-offline protection. In: ASIACCS 16. ACM Press (May / Jun 2016)

24. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol secure against
pre-computation attacks. In: EUROCRYPT 2018, Part III. LNCS, Springer, Heidelberg
(Apr / May 2018)

25. Katz, J., MacKenzie, P.D., Taban, G., Gligor, V.D.: Two-server password-only authenticated
key exchange. In: ACNS 05. LNCS, Springer, Heidelberg (Jun 2005)

26. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange using
human-memorable passwords. In: EUROCRYPT 2001. LNCS, Springer, Heidelberg (May
2001)

27. Kiefer, F., Manulis, M.: Distributed smooth projective hashing and its application to two-
server password authenticated key exchange. In: ACNS 14. LNCS, Springer, Heidelberg
(Jun 2014)

28. Lai, R.W.F., Egger, C., Reinert, M., Chow, S.S.M., Maffei, M., Schröder, D.: Simple
password-hardened encryption services. In: USENIX Security 2018. USENIX Association
(Aug 2018)

29. Lai, R.W.F., Egger, C., Schröder, D., Chow, S.S.M.: Phoenix: Rebirth of a cryptographic
password-hardening service. In: USENIX Security 2017. USENIX Association (Aug 2017)

30. Limited, A.: Signhub (2019), https://www.signinghub.com/
31. MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated key ex-

change. In: CRYPTO 2002. LNCS, Springer, Heidelberg (Aug 2002)
32. Moriarty, K., Kaliski, B., Rusch, A.: Pkcs#5: Password-based cryptography specifica-

tion version 2.1. Tech. Rep. RFC8010, Internet Engineering Task Force (IETF) (2017),
https://tools.ietf.org/html/rfc8018

20

https://clave.gob.es/clave_Home/dnin.html
https://clave.gob.es/clave_Home/dnin.html
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG
https://eprint.iacr.org/2020/060
https://www.websignatureoffice.com/us/
https://www.websignatureoffice.com/us/
https://www.signinghub.com/


33. Park, D., Boyd, C., Moon, S.J.: Forward secrecy and its application to future mobile com-
munications security. In: PKC 2000. LNCS, Springer, Heidelberg (Jan 2000)

34. Schneider, J., Fleischhacker, N., Schröder, D., Backes, M.: Efficient cryptographic password
hardening services from partially oblivious commitments. In: ACM CCS 2016. ACM Press
(Oct 2016)

35. S.p.A., A.: Firma digitale remota (2019), www.aruba.it

21

www.aruba.it

	Auditable Asymmetric Password Authenticated Public Key Establishment



