Abstract
This paper presents a study on different NLP solutions for French homographs disambiguation for text-to-speech systems. Solutions are compared using a home-made corpus of 8137 sentences extracted from the Web, comprising roughly one hundred instances of each of 34 pairs of prototypical words. A disambiguation system based on per-case Linear Discriminant Analysis (LDA) classifiers using contextual word embeddings as input features achieves state-of-the-art F-scores superior to 0.96.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
e.g. the root “techniqu” is only used 5 times in our audiobook database: with no additional patterns from a pronunciation lexicon, “ch” will likely be mispronounced with the post-alveolar fricative
.
- 3.
References
Bisani, M., Ney, H.: Joint-sequence models for grapheme-to-phoneme conversion. Speech Commun. 50(5), 434–451 (2008)
Black, A.W., Lenzo, K., Pagel, V.: Issues in building general letter to sound rules. In: The Third ESCA/COCOSDA Workshop (ETRW) on Speech Synthesis. Jenolan Caves House, Blue Mountains, Australia (1998)
Bosse, M.L., Tainturier, M.J., Valdois, S.: Developmental dyslexia: the visual attention span deficit hypothesis. Cognition 104(2), 198–230 (2007)
Goldman, J.P., Laenzlinger, C., Wehrli, E.: La phonétisation de plus, tous et de certains nombres: une analyse phono-syntaxique. Actes de TALN99, Cargese, Corse, pp. 165–174 (1999)
Gorman, K., Mazovetskiy, G., Nikolaev, V.: Improving homograph disambiguation with supervised machine learning. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (2018)
Kastner, K., Santos, J.F., Bengio, Y., Courville, A.: Representation mixing for TTS synthesis. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5906–5910. IEEE (2019)
Kumar, A.: NLP pre-trained models explained with examples (2021)
Le, H., et al.: Flaubert: unsupervised language model pre-training for French (2019). https://arxiv.org/abs/1912.05372
Lenglet, M., Perrotin, O., Bailly, G.: Modélisation de la parole avec tacotron2: analyse acoustique et phonétique des plongements de caractère. In: 34\(^{e}\) Journées d’Études sur la Parole (JEP), pp. 845–854. Noirmoutier, France (2022)
Nicolis, M., Klimkov, V.: Homograph disambiguation with contextual word embeddings for TTS systems. In: ISCA Speech Synthesis Workshop (SSW), pp. 222–226 (2021). https://doi.org/10.21437/SSW.2021-39
Ping, W., et al.: Deep voice 3: scaling text-to-speech with convolutional sequence learning. arXiv preprint arXiv:1710.07654 (2017)
Ren, Y., et al.: Fastspeech: fast, robust and controllable text to speech. Adv. Neural Inf. Process. Syst. 32 (2019)
Shen, J., et al.: Natural TTS synthesis by conditioning wavenet on mel spectrogram predictions (2018). https://arxiv.org/abs/1712.05884
Sun, M., Bellegarda, J.R.: Improved pos tagging for text-to-speech synthesis. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5384–5387. IEEE (2011)
Taylor, J., Richmond, K.: Analysis of pronunciation learning in end-to-end speech synthesis. In: INTERSPEECH, pp. 2070–2074 (2019)
Yao, K., Zweig, G.: Sequence-to-sequence neural net models for grapheme-to-phoneme conversion. arXiv preprint arXiv:1506.00196 (2015)
Acknowledgments
Supported by the ANR 19-P3IA-0003 MIAI. This work was performed using HPC/AI resources from GENCI-IDRIS (Grant AD011011542).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Appendices
A Appendices
1.1 A.1 Example of Embeddings of Word Pairs (B-wrd)
For example, processing two sentences using the word “as” by the LDA from FlauBERT embeddings of “as”:

1.2 A.2 Example of Embeddings of Class Pairs (B-grp)
Phonetization of heterophone homographes of a FaceBook post of French poetry with no errors:

Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Hajj, ML., Lenglet, M., Perrotin, O., Bailly, G. (2022). Comparing NLP Solutions for the Disambiguation of French Heterophonic Homographs for End-to-End TTS Systems. In: Prasanna, S.R.M., Karpov, A., Samudravijaya, K., Agrawal, S.S. (eds) Speech and Computer. SPECOM 2022. Lecture Notes in Computer Science(), vol 13721. Springer, Cham. https://doi.org/10.1007/978-3-031-20980-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-20980-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20979-6
Online ISBN: 978-3-031-20980-2
eBook Packages: Computer ScienceComputer Science (R0)