Skip to main content

Comparison of Word Embeddings of Unaligned Audio and Text Data Using Persistent Homology

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2022)

Abstract

We have performed preliminary work on topological analysis of audio and text data for unsupervised speech processing. The work is based on the assumption that phoneme frequencies and contextual relationships are similar in the acoustic and text domains for the same language. Accordingly, this allowed the creation of a mapping between these spaces that takes into account their geometric structure. As a first step, generative methods based on variational autoencoders were chosen to map audio and text data into two latent vector spaces. In the next stage, persistent homology methods are used to analyze the topological structure of two spaces. Although the results obtained support the idea of the similarity of the two spaces, further research is needed to correctly map acoustic and text spaces, as well as to evaluate the real effect of including topological information in the autoencoder training process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.): Topological Methods in Data Analysis and Visualization II: Theory, Algorithms, and Applications. Springer-Verlag, p. 299 (2012). https://doi.org/10.1007/978-3-642-23175-9

  2. Carlsson, G.: Topology and data. Bulletin (New Series) of the Amer. Math. Soc. 46, 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zomorodian, A.J.: Topology for Computing. Cambridge University Press, p. 259 (2005)

    Google Scholar 

  4. Ghrist, R.: Barcodes: The Persistent Topology of Data. Bulletin (New Seires) of the Amer. Math. Soc. 45, 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edelsbrunner, H., Harer, J.: Computational Topology, An Introduction. American Mathematical Society, p. 241 (2010)

    Google Scholar 

  6. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, p. 480. Springer (2004). https://doi.org/10.1007/b97315

  7. Carlsson, E., Carlsson, G., de Silva, V.: An algebraic topological method for feature identification. Int. J. Comput. Geom. Appl. 16(4), 291–314 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferri, M., Frosini, P., Cerri, A., Di Fabio (eds.): Computational Topology in Image Context, p. 157. Springer (2012). https://doi.org/10.1007/978-3-642-30238-1

  9. De Floriani, L., Spagnuolo, M.: Shape Analysis and Structuring, p. 296. Springer (2008). https://doi.org/10.1007/978-3-540-33265-7

  10. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications, p. 503. John Wiley & Sons, Inc. (2010)

    Google Scholar 

  11. Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. In: Proceedings of the European Congress of Mathematics, pp. 31–50 (2012)

    Google Scholar 

  12. Hsu, W., Zhang, Y., Glass, J.R.: Learning latent representations for speech generation and transformation (2017). arXiv:1704.04222, https://arxiv.org/abs/1704.04222

  13. Kingma, D.P., Welling M.: Auto-encoding variational bayes (2013). arXiv:1312.6114, https://arxiv.org/abs/1312.6114

  14. Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S.: DARPA TIMIT acoustic-phonetic continous speech corpus. NIST speech disc 1–1.1. NASA STI/Recon technical report, 93, 27403 (1993)

    Google Scholar 

  15. McFee, B., Raffel, C., Liang, D., Ellis, D.P., McVicar, M., Battenberg, E., Nieto, O.: librosa: audio and music signal analysis in python. In: Proceedings of the 14th Python in Science Conference, vol. 8, pp. 18–25 (2015)

    Google Scholar 

  16. Srinivasa-Desikan, B.: Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd (2018)

    Google Scholar 

  17. Bauer, U.: Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl. Comput. Topology 5, 391–423 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the Ministry of Education and Science of the Republic of Kazakhstan under the grants No. AP13068635 and No. AP08053085.

We also thank Dr. Nikolay Makarenko from The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo for his invaluable comments and lecture notes on the topic of topological data analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhandos Yessenbayev or Zhanibek Kozhirbayev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yessenbayev, Z., Kozhirbayev, Z. (2022). Comparison of Word Embeddings of Unaligned Audio and Text Data Using Persistent Homology. In: Prasanna, S.R.M., Karpov, A., Samudravijaya, K., Agrawal, S.S. (eds) Speech and Computer. SPECOM 2022. Lecture Notes in Computer Science(), vol 13721. Springer, Cham. https://doi.org/10.1007/978-3-031-20980-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20980-2_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20979-6

  • Online ISBN: 978-3-031-20980-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics