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Abstract. In recent years, Web services are becoming more and more
intelligent (e.g., in understanding user preferences) thanks to the integra-
tion of components that rely on Machine Learning (ML). Before users can
interact (inference phase) with an ML-based service (ML-Service), the
underlying ML model must learn (training phase) from existing data, a
process that requires long-lasting batch computations. The management
of these two, diverse phases is complex and meeting time and quality
requirements can hardly be done with manual approaches.
This paper highlights some of the major issues in managing ML-services
in both training and inference modes and presents some initial solutions
that are able to meet set requirements with minimum user inputs. A pre-
liminary evaluation demonstrates that our solutions allow these systems
to become more efficient and predictable with respect to their response
time and accuracy.
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1 Introduction

In recent years, Web services have been enriched with components based on
Machine Learning (ML) that allow for new types of interactions (e.g., vocal
assistants, chatbots), more customized experiences (e.g., recommender systems),
and novel features (e.g., object detection in images, smart auto-completion) [13].
ML-based services (ML-Services) exploit models that, created in a preliminary
training phase, are then used at runtime to provide required results as predictions
on new inputs (inference phase) [21].

The training phase is a long-lasting —from several minutes to days— batch
computation. Given the inputs of this phase are usually large datasets (e.g.,
thousands of images), the computation is executed by using dedicated frame-
works (e.g., Spark [33], TensorFlow [1]) that run on a highly distributed cluster
of virtual or physical machines. The inference phase exploits the generated model
in an interactive way and each computation (e.g., a prediction based on a single
image as input) lasts a significantly shorter amount of time compared to training
(e.g., milliseconds or seconds).
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The quality of these “new” web services is not only stated in terms of con-
straints on provided performance. For example, traditional Service Level Agree-
ments (SLA) or Service Level Objectives (SLO) [25] usually constrain the max-
imum allowed response time. An ML-service must also be accurate. It is not
a matter of functional correctness (and performance) anymore; an ML-service
must offer predictions with a given accuracy and precision [15].

In the training phase, requirements on the response time are specified as
deadlines [11], which is the maximum allowed time to complete a single training
process. In the inference phase, the response time of multiple requests (e.g., the
ones received in the last 10 minutes) is aggregated and constrained by a thresh-
old [17]. In the training phase, requirements on quality can be easily defined
through thresholds (e.g., the accuracy should be greater than 90%) since this
metric can be measured during the computation using a validation or a testing
dataset [28]. However, in inference mode, the quality of the predictions cannot be
easily computed since, by definition, the correct output is unknown (if it were
not, there would not have been any need for the ML model). Thus, different
“indirect” metrics can be considered to estimate the quality of predictions at
runtime [29].

The management of ML-services is thus a complex task since multiple in-
terdependent factors affect their overall performance. For example, the response
time is affected, among other aspects, by resource allocation. ML computations
can be executed on CPUs, but also on dedicated hardware (e.g., GPUs) given
their highly parallelizable programming model. However, increasing the compu-
tational power is not useful if the data or the model itself are not properly par-
titioned to allow for a sufficient degree of parallelism. Model quality depends on
a number of factors including the parameters of the learning algorithm (i.e., hy-
perparameters) and the characteristics of the input dataset. Moreover, response
time and quality are often correlated. For example, fewer learning iterations
allow for faster results but produce, in general, less accurate models.

Some initial approaches have already been presented to tackle single aspects
of ML-service management. For example, Nguyen et al. [23] present a solution
to predict the time required to train a model using Spark given a user-defined
configuration. Li et al. [20] describe a solution for the automated configuration of
hyperparameters, while Morabito et al. [22] propose a solution for the automated
resource provisioning of ML models in inference mode. However, there is no
solution or study that provides a multi-faceted view of the problem.

This paper describes the main aspects and issues of managing ML-services
in both training and inference modes. Based on our work in the field, we also
illustrate a set of solutions, along with their evaluation, that we have developed
during the last few years and that can be used as a starting point to design a
fully integrated solution for the management of ML-based systems.

The rest of this paper is organized as follows. Section 2 presents the most im-
portant challenges of ML-services. Section 3 describes our solutions and reports
their initial evaluation. Finally, Section 4 concludes the paper.
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2 ML-service Management

This section highlights the main aspects and issues related to ML-service man-
agement. It mainly focuses on time and quality constraints during both training
and inference phases.

2.1 Training

Training computations require executing highly iterative algorithms that exploit
large datasets as inputs. These datasets contain known input-output pairs that
are used to generate models that can predict the correct outputs for new, never-
seen inputs (inference).

The structure of the model (e.g., the layers of a neural network) is defined by
the users beforehand along with a set of model parameters whose optimal values
are computed as a result of the training process. To do so, the training phase
minimizes a loss function that compares the outputs generated by the model
under construction and the known answers.

During the optimization process, the model parameters are updated multiple
times. The execution is organized in batches. A batch is the amount of data (i.e.,
the number of input-output pairs) that is used to update the model parameters.
An epoch is the amount of batches required to process the whole dataset. Each
training process executes multiple epochs, up until a certain model quality or a
timeout are reached.

Available frameworks Given that these computations are resource-demanding
and require processing large amounts of data that cannot easily fit on a single
machine, the training phase of ML models is usually executed through special
purpose frameworks that allow for highly distributed and parallelized executions.

The reference programming model for batch computations is map-reduce [7],
popularized by Google and the Hadoop framework [19]. The computation is
organized in two phases: map and reduce. In the former, the input dataset (e.g.,
a set of user posts) is split into a set of partitions that are processed in parallel
by multiple executors that transform each partition into a new set of data (e.g.,
a list of words occurrences). The latter aggregates the transformed data and
produces a result (e.g., the top ten words used by users in their posts) that is
usually written into a database or disk.

DAG-based frameworks, such as Spark, are an evolution of this programming
model and they allow one to create direct acyclic graphs (DAGs) of data trans-
formations and aggregations (not only a sequence of map-reduce computations).
As in map-reduce, multiple executors process single partitions of data in parallel.
These computations are organized in stages, that is, the execution of a set of
operations that do not require data transmission among executors. When a stage
is concluded, each executor sends the results of its local computation to another
executor (data shuffling), and a new stage (the next in the DAG) is scheduled for
execution. In these frameworks, computations and data transfers are executed
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in-memory without requiring to store intermediate results on (slower) external
storage systems.

The aforementioned approaches are general-purpose and not specifically de-
signed for ML training. In recent years, new frameworks, such as TensorFlow [1]
and PyTorch [24], have been developed as highly optimized frameworks for ML
training. They introduce a programming model called all-reduce where the ex-
ecutors work on a single batch in parallel with the others. The computed results
are then aggregated (reduce) and the model update is transmitted to all the
other executors (all) so that they can use it as a starting point for the next
batch. This way, all-reduce allows for the efficient propagation of the results
of an aggregation to all the available executors (broadcast), whereas in DAG-
based computations a single executor only communicates with another one and
broadcast communication is less efficient and more difficult to implement.

All these frameworks do not provide explicit means to set time or quality re-
quirements. Therefore, users must rely on manual solutions and they have to use
experience and “guess” the proper configuration that meets expected thresholds.

Available frameworks provide different programming models. All of them
organize the computation in phases (e.g., one phase for each epoch or each
batch) to orchestrate multiple distributed executors that work in parallel.
None of these frameworks allows one to specify quality and time constrains
on carried out activities.

Hyperparameters While parameters usually refer to the variables optimized
during the training process (model parameters), hyperparameters are the vari-
ables used to configure the training algorithm beforehand. These parameters
deeply affect both the quality of the output and the time required to complete
the training process.

The architecture of the model employed for training can be seen as a hyper-
parameter. In general terms, the more sophisticated the architecture is, the more
time is needed to train the model. In terms of accuracy, complex architectures
may be able to learn more patterns and subtleties from the data but they may
fail in generalizing to new inputs (by assuming that the subtle patterns found
in the input dataset characterize any inputs).

Any configuration parameter of the training algorithm is a hyperparame-
ter. For example, the batch size regulates the frequency of updates. Frequent
model updates may generate more accurate models but also increase the re-
quired synchronization among the executors (e.g., higher response times). The
number of epochs regulates the amount of iterations on the entire dataset. The
more epochs one can afford, the more optimized model parameters will be. This
produces high-quality models at the cost of longer executions.

Hyperparameters are defined at design time and they impact the quality
of the model and the execution time of the training phase. They must be
carefully tuned to train the model efficiently and precisely.
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Parallelism To allow multiple executors to cooperate in training models, one
can adopt two main strategies to maximize the degree of parallelism of the
computations [12]: data parallelism and model parallelism.

Data parallelism allows one to split the input dataset onto multiple executors,
which store a full copy of the model each. This way, the executors can work in
parallel on different partitions and the results of the local computations are
aggregated in a subsequent phase. This technique is valuable when the input
dataset exceeds the memory (and/or storage) of a single executor and allows us
to speed up the computation by increasing the number of executors (up to the
number of batches). This strategy is available in most of the existing frameworks
and it is the easiest to implement.

Model parallelism partitions the model architecture into different parts that
are independently stored onto different executors. This strategy is used when
the model itself exceeds the capacity of the executor. Moreover, the model ar-
chitecture may allow for an “intrinsic” parallelism so that some of the model
parameters can be optimized in parallel with others. In this case, it is very im-
portant to understand the best way to partition the model given the executors
available. Recent studies show that model parallelism may also slightly decrease
model accuracy [6].

Data and model parallelism can be combined so that both the model and
data are partitioned into multiple parts. Each model partition is then replicated
onto multiple executors so that they can optimize a subset of model parameters
on independent partitions of data.

Data and model parallelisms allow for highly distributed computations. By
partitioning datasets and/or models one can accelerate the computation at
the cost of more synchronization among executors.

Resource Allocation To speed up (or slow down) the training phase and meet
set deadlines, users can tune the amount of resources allocated to the system.
The computations to train ML models are mostly based on matrix operations
that can be highly parallelized. For this reason, GPUs and dedicated hardware
devices (e.g., TPUs [14]) can be exploited to further accelerate the processing.
Resource allocation can be handled at both design time (before training) and
runtime (during training).

At design time the number of executors and the resources allocated to them
must be configured by considering set requirements, the hyperparameters (e.g.,
number of epochs), and the characteristics of the input dataset. More sophisti-
cated approaches allow for dynamic resource allocation (e.g., as in Spark1. This
means that the amount of executors and their resource allocation can be re-
configured over time according to the state of the computation. For example,
when the set deadline is approaching, the system may spawn a new executor or
increase the amount of computational power allocated to an existing one. Sim-
ilarly, one can realize that the computation could require more iterations than
1 https://spark.apache.org/docs/latest/job-scheduling.html

https://spark.apache.org/docs/latest/job-scheduling.html
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expected to reach a set model quality and more resources could help finish the
training process in time.

Memory is also extremely important since slow read/write on the disk can
quickly become the bottleneck. The memory allocation of each executor should
be adequate to fit both data and model (partitions). Unlike computational power,
which can be increased to speed up the processing up to the maximum degree
of parallelism, memory is either sufficient or insufficient.

Resource allocation is key to fulfill time-based requirements. Resource allo-
cation can be tuned at either design time or runtime and executors may be
equipped with heterogeneous hardware.

2.2 Inference

Once training activities have generated a model, it is deployed and used to
compute predictions on new inputs. These computations are interactive and they
are much faster than training: users can submit requests and get a response in
the order of seconds or milliseconds.

Unlike training where requirements are defined for the complete process
(deadline), during inference, they constrain a set of requests received by the
system during a given time window. Requirements can be both related to time
(e.g., the 95th percentile of the response time should be less than one second)
or to quality.

Available frameworks While map-reduce and DAG-based frameworks were
designed to host batch computations only, ML frameworks provide some tools to
serve models in inference mode. For example, TensorFlow provides TensorFlow
serving2, a tool that eases the deployment of models onto web servers to let
them be invoked by using a REST API.

When the incoming workload cannot be handled by a single executor, mul-
tiple replicas of the same model must be used concurrently (distributed infer-
ence). Ideally, a framework should allow one to submit requests to a unified
API that forwards them to available replicas. Frameworks should also support
multiple models running in parallel on a shared infrastructure, since a single
ML-service may exploit multiple ML-based components. Unfortunately, in the
available frameworks, the support for distributed inference is, at the time of
writing, very limited. Moreover, none of the frameworks support time or quality
requirements, and users must handle them with external or manual solutions.

ML frameworks allow one to use models in inference mode but the means
to deploy and manage them are limited. Existing frameworks lack support
for the specification of quality and time requirements.

2 https://www.tensorflow.org/tfx/guide/serving

https://www.tensorflow.org/tfx/guide/serving
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Resource allocation In inference, resource allocation is key to be able to keep
the ML-service always responsive. Static resource allocation makes only sense
when the workload is constant, a scenario that is usually not realistic. When
the incoming workload fluctuates, resources must be dynamically provisioned to
handle the traffic. Executors can be replicated or reconfigured through CPUs,
GPUs, or dedicated hardware allocations.

When a new request is submitted, it must be processed by an available ex-
ecutor. The selection of this executor may be decided according to multiple
factors, including the equipped hardware and the amount of requests that it is
already handling (queue length). If an ML-based component is close to violating
a requirement (e.g., the response time is increasing), faster executors must be
selected (e.g., ones equipped with GPUs). If the ML-service is stable, one can
leave faster executors to other components.

Memory must be large enough to contain the model, whereas input data are
usually much smaller (e.g., a single image) than the ones used in training and
they are usually not difficult to handle. If the model is too large to fit onto a
single executor, model partitioning can be used to further split the computation.

Dynamic resource allocation allows for keeping ML-service always respon-
sive when the incoming workload fluctuates. At runtime, requests must be
scheduled to proper executors according to their hardware capabilities and
the state of the system.

Monitoring Monitoring the quality of the model in inference mode is a com-
plex task since evaluating predictions on new inputs would require knowing the
correct outputs (ground truth).

Since quality cannot be directly computed, alternative metrics must be taken
into account. Uncertainty is a widespread metric used in the literature to esti-
mate the quality of a trained models [16]. Intuitively, when the uncertainty in
predictions is high, it is more likely to produce incorrect outputs. For example,
one can use a set of similar ML models (e.g., DeepEnsemble [18]) to compute
multiple predictions for each input. If the outputs are similar (low variance), the
outputs are probably correct. If the outputs are different (high variance), the
uncertainty is high and the prediction quality may have dropped.

In this context, users may set a requirement on the maximum allowed un-
certainty and when this threshold is violated, the ML model must be re-trained.
This may require the manual collection of a new training dataset or the genera-
tion of a new one automatically (e.g., using data augmentation [26]).

The quality of ML models at runtime cannot be directly monitored for the
lack of ground truth. Uncertainty can help estimate the quality of the model
and understand when it must be re-trained.
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3 What we have done so far

This section describes three solutions we developed for managing some aspects
of ML-services: dynaSpark , hyperFL, and ROMA. dynaSpark extends Spark by
allowing one to associate time requirements with batch computations, and by
means of a sophisticated dynamic resource allocation mechanism. hyperFL ex-
tends Tensorflow and it is also dedicated to the training phase. It exploits heuris-
tics to set hyperparameters values so that quality constraints are met. Finally,
ROMA is dedicated to the inference phase. It also extends TensorFlow and al-
lows one to set response time requirements that are met through the allocation
of both CPUs and GPUs.

3.1 dynaSpark

dynaSpark [3,2] extends Spark by introducing advanced and automated resource
management. dynaSpark allows users to define deadlines that are considered as
the desired response time for a single batch execution (e.g., a training process).
The goal of dynaSpark is to control the resources allocated to the computation
so that its execution time is as close as possible to the user-defined deadline.
The rationale behind it is that the closer the response time is to the deadline
the more efficient the usage of resources is: finishing before the deadline would
mean allocating more resources than needed, while terminating afterward im-
plies violating the deadline because of too scarce resource allocation. Moreover,
dynaSpark can manage multiple Spark computations at the same time (e.g., the
training phase of different ML models that run concurrently) and keep their
execution time under control.

dynaSpark requires a profiling phase to retrieve the DAG of the computation
and performance data of each stage. During the execution, dynaSpark exploits
dynamic vertical scalability of resources. This means that the resources allocated
to executors is continuously reconfigured without the need for restarting them
or creating new ones. The framework wraps executors in lightweight containers
(e.g., Docker3) and control-theoretical planners are used to compute resource
allocation in a fast and fine-grained fashion.

dynaSpark exploits a hierarchical control loop. At the top of the hierarchy,
a memory controller is in charge of dynamically resizing the amount of memory
allocated to each running executor. This controller distributes available memory
fairly to all running computations and it is only activated when the user submits
a new computation or when one finishes. When a new stage of a computation
starts, a stage controller exploits the deadline submitted by the user and the
profiling data retrieved beforehand. As a result, this controller computes a local
deadline for the stage along with the number of executors needed to fulfill it.
Each executor in dynaSpark is equipped with an executor level controller based
on control theory in charge of keeping the execution time as close as possible to
the deadline computed for the stage. By exploiting a feedback loop, it monitors
3 https://docker.com

https://docker.com
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the progress of the stage (i.e., how many data samples are processed over the
total assigned ones) and allocates processing power (i.e., fractions of CPUs)
accordingly. Multiple executors work in parallel on a single stage to fulfill the
same local deadline, and data are fairly partitioned among them. This way, the
controllers can operate without synchronization and independently from one
another.

Since multiple executors can be run on the same node, dynaSpark exploits
a node level controller to manage resource contention. This controller collects
all the resource allocations computed by the executor level controllers that are
running on the same node. If their sum exceeds the capacity of the node, alloca-
tions are scaled down according to different strategies such as Earliest Deadline
First [31] (EDF) or proportionally.

Spark

Strategy 1

Strategy 2

wait

PA
GE

RA
NK

KM
EA

NS
SV

M

59

5940 145

222

200

80

340

300

78

wait
230 324

145 196161

289

time [s]

time [s]

time [s]

Fig. 1: Concurrent computations in dynaSpark .

Evaluation The evaluation of dynaSpark was executed on Microsoft Azure
using a cluster of 5 Standard_D14_v2 virtual machines (VMs) equipped with
16 CPUs, 112 GB of memory, and 800 GB of local SSD storage. Here we only
report a single significant experiment that clearly demonstrates the benefits of
dynaSpark , while [3] comprises a larger and comprehensive set of experiments.

For this experiment, we compared Spark and dynaSpark . Spark was config-
ured to use its default allocation mechanism that allocates all the resources to
the first computation it receives (FIFO). dynaSpark was configured with both a
resource contention strategy based on EDF (Strategy 1 ) and a proportional one
(Strategy 2 ). The first strategy aims to avoid violations and it is more conser-
vative. The second one tends to let the different application progress simultane-
ously at a similar pace to minimize resources but with more risk of violating the
deadlines.

We executed three well-known ML algorithms in parallel: PageRank, KMeans
and SVM. As shown in Figure 1 we submitted for execution PageRank first at
instant 0 with a deadline of 300 seconds, then KMeans at instant 40 with a dead-
line of 300 seconds and, finally, SVM at instant 80 with deadline 120 seconds.
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Results show that Spark violated the deadline of SVM while the executions of
PageRank and KMeans finished way before expected. This inefficient behavior
is caused by the limited resource allocation mechanism built in Spark, its simple
FIFO-based strategy for managing resource contention, and the lack of support
for deadlines.

In contrast, dynaSpark did not violate the deadlines both with Strategy 1
and 2. The former always finished significantly ahead of the time given its con-
servative policy (more resources are allocated). Strategy 2 resulted, in this case,
in a highly efficient resource usage since the three computations were completed
just a few seconds before their respective deadlines.

3.2 hyperFL

hyperFL [4] is an extension of TensorFlow to allow a set of federated nodes
(i.e., Federated ML [32]) to cooperatively train an ML model under quality
constraints. Since executors are geographically distributed (e.g., running on a
set of edge nodes), the cost of synchronization is particularly significant and
the amount of communication between executors should be minimal. For this
reason, hyperFL assumes executors to work on different datasets and models
that are trained locally and aggregated only when needed. In particular, the
computation is organized in R rounds (R is fixed and given). A round is a
sequence of consecutive epochs where the executors perform independently and
in parallel the training processes and only merge the results at the end (similarly
to stages in Spark).

At the core of hyperFL lays an algorithm, executed at the beginning of each
round r, that takes as input a constraint on model accuracy (AC) (e.g., AC >
ACSLA) and computes the hyperparameter Er that is the number of epochs to
be processed on each executor during r to obtained the desired quality at the
end of R rounds.

The algorithm exploits two alternative heuristics: linear and quadratic in-
terpolation, and works in a black-box way since it does not require any prior
information om the model: it only exploits monitored data (e.g., the accuracy of
the model after each round). To be properly initialized the algorithm needs two
rounds in which the computation is executed using a fixed configuration. As a
first step, hyperFL computes the accuracy to be reached at the end of round r
(ACr). To do so it assumes either a linear progress towards ACSLA from round
0 to R, or a smoother quadratic one. In the second step, hyperFL computes Er

as a function of ACr, the cumulative sums of the epochs computed in rounds
r − 1 and r − 2, and the accuracy obtained at the same previous rounds.

Evaluation We evaluated hyperFL on a bare-metal single-user server equipped
with an AMD Ryzen 5 2600 @ 3.40GHz (6 Cores / 12 Threads) CPU and 32GB
DDR4 @3200MHz of RAM running Ubuntu 19.10. We used two real-world ML-
services: MNIST [8] and Fashion-MNIST [30]. The former takes as input an
image with a handwritten digit and outputs the corresponding number. The
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MNIST Fashion-MNIST
Linear Quadratic Linear Quadratic

r Er ACr Er ACr Er ACr Er ACr

1 1 0.25 1 0.16 1 0.22 1 0.14
2 1 0.30 1 0.19 1 0.30 1 0.32
3 1 0.36 7 0.51 1 0.38 1 0.42
4 1 0.39 1 0.54 1 0.45 1 0.46
5 2 0.47 3 0.62 1 0.51 2 0.53
6 2 0.52 3 0.68 1 0.57 2 0.58
7 4 0.58 3 0.73 1 0.60 3 0.62
8 6 0.67 4 0.75 1 0.62 4 0.65
9 8 0.75 11 0.79 4 0.67 6 0.67
10 4 0.77 1 0.80 2 0.68 11 0.71

Table 1: hyperFL results. Fig. 2: hyperFL accuracy with MNIST.

latter receives a gray-scale image of a fashion item and outputs the corresponding
class (e.g., t-shirt, bag).

In the sample of the experiments reported here, we set for MNIST R = 10
and ACSLA = 0.80, while R = 10 and ACSLA = 0.70 for Fashion-MNIST. Table
1 shows the computed epoch Er along with the obtained accuracy ACr for each
round r for both the services and hyperFL interpolation algorithms. hyperFL
with linear interpolation obtained a steady increment of the accuracy with only
one epoch computed for rounds 1-4 (MNIST ) and 1-8 (Fashion-MNIST ). As
final results in both the services, hyperFL with linear interpolation terminated
the training with an accuracy that is very close to the threshold but slightly
lower.

In contrast, hyperFL with quadratic interpolation was able in both cases to
reach the target ACSLA by computing higher values of Er in the first rounds.
This can be better visualized in Figure 2 that reports the result of the exper-
iments with MNIST and quadratic interpolation. The chart shows both the
accuracy computed on the validation set (ACfit) and the one on the testing set
(ACeval). ACSLA was reached exactly at round R, with a peak increment of
epochs (11) at round 9. This larger value of Er corresponds to a small increment
in the accuracy (0.01) and shows that a quadratic curve better captures the
intrinsically asymptotic behavior of the accuracy compared to a linear approxi-
mation.

3.3 ROMA

ROMA [5] is a comprehensive resource management solution for ML models
in inference mode. In particular, it facilitates the deployment and operations of
multiple interactive ML services on shared infrastructures. It extends TensorFlow
(and TensorFlow serving) by allowing users to set requirements on the response
time. Unlike TensorFlow, ROMA provides means for distributed inference and
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efficiently allocates CPU and GPU resources by considering the state of all served
ML-services.

ROMA features a master-slave architecture. The master allows users to sub-
mit requests to deployed models and schedules them on the executors that are
running on the slaves. Each slave is assumed to be equipped with at least one
CPU and zero or more GPUs. The framework wraps each executor in a container,
and multiple replicas of the same model can be deployed when the workload in-
creases. We also exploit Kubernetes4 to orchestrate and configure containers.
The master comprises a gateway that store requests —received through a REST
API— in a dedicated queue (one per ML-service). Two schedulers based on
heuristics remove requests from the queues and assign them for execution on a
selected executor. A scheduler is dedicated to GPU executions and, as soon a
GPU is idle, it extracts a request from the queue of the ML-service that is more
likely to violate the set response time. The other scheduler submits requests in
a round-robin fashion to available CPUs.

Each slave can host multiple executors that are controlled by control-theore-
tical planners. As in dynaSpark , these controllers vertically scale the CPU re-
sources of each container/executor according to the needs of the ML-service. To
avoid unpredictable behaviors, control-theoretical planners are aware of GPU
executions that can rapidly decrease the response time of the ML-service un-
der control. A supervisor on each slave is in charge of collecting all computed
allocations and resizing them if they exceed the capacity of the node.

ROMA expects executors to be created manually or automatically using ex-
ternal solutions (e.g. Horizontal Pod Autoscaler5) and only manages existing
resources. Each executor/container is bound to a specific hardware device. In
particular, given m ML-services to be deployed onto a slave node, ROMA pro-
visions i) m executors containing one model each, and binds them to the CPUs
of the node, and ii) one executor, containing all the models, for each GPU.

Evaluation To evaluate ROMA, we used a cluster of three VMs on Microsoft
Azure: one VM of type HB60rs with a CPU with 60 cores and 240GB of mem-
ory for the master, and two VMs, as slave nodes, of type NV 6 equipped with
an NVIDIA Tesla M60 GPU and a CPU with 6 cores and 56GB of memory. We
also used an additional HB60rs VM to generate the workloads. We exploited
four existing ML-services: Skyline Extraction [9], ResNet [10], GoogLeNet [27],
and VGG16 [34]. The first service uses computer-vision algorithms to extract
the skyline horizon from an input image. The other services perform classifica-
tion task: ResNet uses a residual neural network, while GoogLeNet and VGG16
exploit two deep convolutional neural networks.

In the experiments, we run different combinations of these services in parallel
under different workloads and we compared the performance of ROMA against
competitors based on rules or heuristics. The results show that, overall, ROMA
4 https://kubernetes.io
5 https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/

https://kubernetes.io
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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reduces by 75% on average the number of violations while decreasing by 24%
the resources used.

Figure 3 shows the most complex experiment we run when all the services are
executed in parallel in our cluster. In particular, Figure 3a shows the performance
obtained by our framework, while Figure 3b depicts the results obtained by a
competitor. ROMA was able to keep the response time of all the ML-services
under the set SLAs (maximum response time equal to 0.4 seconds) thanks to its
efficient usage of GPUs and vertical scaling of CPUs. The competitor solution
frequently violated the SLAs of services VGG16 and ResNet with a maximum
response time of 1.9 seconds and an average resource allocation that is slightly
higher compared to the one consumed by ROMA.
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(a) ROMA
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(b) Rule-based approach

Fig. 3: ROMA: performance and comparison.

4 Conclusions

The management of web services that use ML to provide intelligent features
poses new complex challenges. ML-services require a training phase (batch) to
generate a model that can be used in inference mode to compute predictions on
new inputs (interactive). Time and quality requirements are needed to obtain
predictable performance and accurate predictions.

This paper describes a set of critical aspects that characterize the manage-
ment of ML-services in both the training and inference phases. As a base for a
future, integrated framework that can handle all these aspects simultaneously,
we also describe some initial partial solutions that we developed recently. A
preliminary evaluation of them shows the benefits of our approaches that can
efficiently and automatically fulfill identified requirements.
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