Skip to main content

Mobility-Aware Proactive QoS Monitoring for Mobile Edge Computing

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13740))

Included in the following conference series:

  • 2124 Accesses

Abstract

This article presents a novel probabilistic QoS (Quality of Service) monitoring approach called LSTM-BSPM (DonLSTM-Den based BayeSian Runtime Proactive Monitoring), which is based on the DouLSTM-Den model and Gaussian Hidden Bayesian Classifier for mobile edge environments. A DouLSTM-Den model is designed to predict a user’s trajectory in mobile edge environments. The predicted trajectory is leveraged to obtain the mobility-aware QoS and capture its spatio-temporal dependency. Next, a parent attribute is constructed for each QoS attribute to reduce the influence of dependence between QoS attributes on monitoring accuracy. A Gaussian hidden Bayes classifier is trained for each edge server to proactively monitor the user’s mobility-aware QoS. We conduct a set of experiments respectively upon a public data set and a real-world data set demonstrate the feasibility and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/tensorflow/tensorflow/tree/v2.4.0.

  2. 2.

    http://sguangwang.com/TelecomDataset.html.

  3. 3.

    http://wsdream.github.io/dataset/wsdream_dataset2.html.

References

  1. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on mobile edge networks: convergence of computing, caching and communications. Access 5, 6757–6779 (2017)

    Article  Google Scholar 

  2. Wang, S., Xu, J., Zhang, N., Liu, Y.: A survey on service migration in mobile edge computing. Access 6, 23511–23528 (2018)

    Article  Google Scholar 

  3. Chan, K., Poernomo, I., Schmidt, H., Jayaputera, J.: A Model-oriented framework for runtime monitoring of nonfunctional properties. In: Reussner, R., Mayer, J., Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J. (eds.) QoSA/SOQUA -2005. LNCS, vol. 3712, pp. 38–52. Springer, Heidelberg (2005). https://doi.org/10.1007/11558569_5

    Chapter  Google Scholar 

  4. Sammapun, U., Lee, I., Sokolsky, O., Regehr, J.: Statistical Runtime checking of probabilistic properties. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 164–175. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-5_14

    Chapter  Google Scholar 

  5. Billhardt, H., Hermoso, R., Ossowski, S., Centeno, R.: Trust-based service provider selection in open environments. In: SAC, pp. 1375–1380 (2007)

    Google Scholar 

  6. Grunske, L.: An effective sequential statistical test for probabilistic monitoring. Inf. Softw. Technol. 53(3), 190–199 (2011)

    Article  Google Scholar 

  7. Zhu, Y., Xu, M., Zhang, P., Li, W., Leung, H.: Bayesian probabilistic monitor: a new and efficient probabilistic monitoring approach based on Bayesian statistics. In: QSIC-13, pp. 45–54, IEEE (2013)

    Google Scholar 

  8. Zhang, P., Zhuang, Y., Leung, H., Song, W., Zhou, Y.: A novel QoS monitoring approach sensitive to environmental factors. In: ICWS, pp. 145–152, IEEE (2015)

    Google Scholar 

  9. Zhang, P., Zhang, Y., Dong, H., Jin, H.: Mobility and dependence-aware QoS monitoring in mobile edge computing. IEEE Trans. Cloud. Comput. 9(3), 1143–1157 (2021)

    Article  Google Scholar 

  10. Tommasi, F., De Luca, V., Melle, C.: QoS monitoring in real-time streaming overlays based on lock-free data structures. Multim. Tools Appl. 80(14), 20929–20970 (2021)

    Article  Google Scholar 

  11. Najm, M., Patra, M., Tamarapalli, V.: An adaptive and dynamic allocation of delay-sensitive vehicular services in federated cloud. In: 2021 COMSNETS, pp. 97–100, IEEE (2021)

    Google Scholar 

  12. Zhang, P., Jin, H., He, Z., Leung, H., Song, W., Jiang, Y.: IGS-WBSRM: a time-aware web service QoS monitoring approach in dynamic environments. Inf. Softw. Technol. 96, 14–26 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China under Grant (No. 62272145, No. U21B2016), the Natural Science Foundation of Jiangsu Province under grant No. BK20191297, the Fundamental Research Funds for the Central Universities under grant No. B210202075. This research was also partially supported by the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (project DP220101823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, T., Zhang, P., Dong, H., Jin, H., Bouguettaya, A. (2022). Mobility-Aware Proactive QoS Monitoring for Mobile Edge Computing. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds) Service-Oriented Computing. ICSOC 2022. Lecture Notes in Computer Science, vol 13740. Springer, Cham. https://doi.org/10.1007/978-3-031-20984-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20984-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20983-3

  • Online ISBN: 978-3-031-20984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics