Skip to main content

CT2CXR: CT-based CXR Synthesis for Covid-19 Pneumonia Classification

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13583))

Included in the following conference series:

  • 1115 Accesses

Abstract

Chest X-ray (CXR) is a common imaging modality for examination of pneumonia. However, some pneumonia signs which are visible in CT may not be clearly identifiable in CXR. It is challenging to create a good ground truth for positive pneumonia cases based on CXR images especially for cases with small pneumonia lesions. In this paper, we propose a novel CT-based CXR synthesis framework, called ct2cxr, to perform data augmentation for pneumonia classification. Generative Adversarial Networks (GANs) were exploited and a customized loss function was proposed for model training to preserve the target pathology and maintain high image fidelity. Our results show that CXR images generated through style mixing can enhance the performance of general pneumonia classification models. Testing the models on a Covid-19 dataset shows similar improvements over the baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostolopoulos, I.D., Mpesiana, T.A.: COVID-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 43(2), 635–640 (2020)

    Article  Google Scholar 

  2. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Google Scholar 

  3. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd GANs. arXiv preprint arXiv:1801.01401 (2018)

  4. Borghesi, A., Maroldi, R.: COVID-19 outbreak in Italy: experimental chest x-ray scoring system for quantifying and monitoring disease progression. Radiol. Med. (Torino) 125, 509–513 (2020)

    Article  Google Scholar 

  5. Chowdhury, M.E., et al.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665–132676 (2020)

    Article  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 1–8 (2014)

    Google Scholar 

  7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Adv. Neural Inf. Process. Syst. 30, 1–9 (2017)

    Google Scholar 

  8. Irvin, J., Rajpurkar, P., Ko, M., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)

    Google Scholar 

  9. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  10. Khan, A.I., Shah, J.L., Bhat, M.M.: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed. 196, 105581 (2020)

    Article  Google Scholar 

  11. Li, X., Yang, J., Zhu, Y.: Digitally reconstructed radiograph generation by an adaptive monte Carlo method. Phys. Med. Biol. 51(11), 2745 (2006)

    Article  Google Scholar 

  12. Liu, S., Dowling, J.A., Engstrom, C., Greer, P.B., Crozier, S., Chandra, S.S.: Manipulating medical image translation with manifold disentanglement. arXiv preprint arXiv:2011.13615 (2020)

  13. Loey, M., Smarandache, F., M Khalifa, N.E.: Within the lack of chest COVID-19 x-ray dataset: a novel detection model based on GAN and deep transfer learning. Symmetry. 12(4), 651 (2020)

    Google Scholar 

  14. Maghdid, H.S., Asaad, A.T., Ghafoor, K.Z., Sadiq, A.S., Mirjalili, S., Khan, M.K.: Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. In: Multimodal Image Exploitation and Learning 2021, vol. 11734, p. 117340E. International Society for Optics and Photonics (2021)

    Google Scholar 

  15. Mostafavi, S.M.: COVID19-CT-Dataset: An Open-Access Chest CT Image Repository of 1000+ Patients with Confirmed COVID-19 Diagnosis (2021). https://doi.org/10.7910/DVN/6ACUZJ

  16. Nguyen, D., et al.: Deep learning-based COVID-19 pneumonia classification using chest CT images: model generalizability. Front. Artif. Intell. 4, 694875 (2021)

    Article  Google Scholar 

  17. Ren, Z., Yu, S.X., Whitney, D.: Controllable medical image generation via generative adversarial networks. Electron. Imaging 2021(11), 112–121 (2021)

    Google Scholar 

  18. Richardson, E., et al.: Encoding in style: a StyleGAN encoder for image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2287–2296 (2021)

    Google Scholar 

  19. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. Adv. Neural Inf. Process. Syst. 29, 1–9 (2016)

    Google Scholar 

  20. Sherouse, G.W., Novins, K., Chaney, E.L.: Computation of digitally reconstructed radiographs for use in radiotherapy treatment design. Int. J. Rad. Oncol. * Biol.* Phys. 18(3), 651–658 (1990)

    Google Scholar 

  21. Signoroni, A., et al.: BS-Net: learning COVID-19 pneumonia severity on a large chest x-ray dataset. Medical Image Analysis p. 102046 (2021). https://doi.org/10.1016/j.media.2021.102046, https://www.sciencedirect.com/science/article/pii/S136184152100092X

  22. Sim, J.Z.T., Ting, Y.H., Tang, Y., et al.: Diagnostic performance of a deep learning model deployed at a national COVID-19 screening facility for detection of pneumonia on frontal chest radiographs. In: Healthcare, vol. 10, p. 175. MDPI (2022)

    Google Scholar 

  23. Staub, D., Murphy, M.J.: A digitally reconstructed radiograph algorithm calculated from first principles. Med. Phys. 40(1), 011902 (2013)

    Article  Google Scholar 

  24. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., Cohen-Or, D.: Designing an encoder for StyleGAN image manipulation. ACM Trans. Graph. (TOG) 40(4), 1–14 (2021)

    Article  Google Scholar 

  25. Unberath, M., et al.: DeepDRR – a catalyst for machine learning in fluoroscopy-guided procedures. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_12

    Chapter  Google Scholar 

  26. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R.: COVIDGAN: data augmentation using auxiliary classifier GAN for improved COVID-19 detection. IEEE Access 8, 91916–91923 (2020)

    Article  Google Scholar 

  27. Wang, L., Chen, W., Yang, W., Bi, F., Yu, F.R.: A state-of-the-art review on image synthesis with generative adversarial networks. IEEE Access 8, 63514–63537 (2020)

    Article  Google Scholar 

  28. Yan, T., Wong, P.K., Ren, H., Wang, H., Wang, J., Li, Y.: Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest ct scans. Chaos, Solitons Fractals 140, 110153 (2020)

    Article  MathSciNet  Google Scholar 

  29. Yousefzadeh, M., et al.: AI-corona: radiologist-assistant deep learning framework for COVID-19 diagnosis in chest CT scans. PLOS ONE. 16(5), e0250952 (2021)

    Google Scholar 

  30. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  31. Zhou, L., et al.: Lung swapping autoencoder: Learning a disentangled structure-texture representation of chest radiographs. arXiv preprint arXiv:2201.07344 (2022)

  32. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgement

The work is partially funded by a GAP project ACCL/19-GAP012-R20H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuen, P.H.H. et al. (2022). CT2CXR: CT-based CXR Synthesis for Covid-19 Pneumonia Classification. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds) Machine Learning in Medical Imaging. MLMI 2022. Lecture Notes in Computer Science, vol 13583. Springer, Cham. https://doi.org/10.1007/978-3-031-21014-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21014-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21013-6

  • Online ISBN: 978-3-031-21014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics