Skip to main content

Coronary Ostia Localization Using Residual U-Net with Heatmap Matching and 3D DSNT

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2022)

Abstract

Localization of coronary ostia landmarks in Computed Tomography Angiography (CTA) volumes is a crucial step in developing various automatic diagnostic procedures. In this study, we propose a one-step method of coronary ostia landmark localization that utilizes a residual U-Net with heatmap matching and 3D Differentiable Spatial to Numerical Transform (DSNT). We evaluate the method using two datasets: a Coronary Computed Tomography Angiography (CCTA) dataset containing 201 scans and a publicly available ImageTBAD dataset containing 77 CTA scans annotated with coronary ostia landmarks.

On the CCTA dataset we report median Euclidean distance error – 1.14 mm on the left coronary ostium and 0.98 mm on the right coronary ostium. On the ImageTBAD CTA dataset we report median Euclidean distance error – 3.48 mm on the left coronary ostium and 2.97 mm on the right coronary ostium. Our evaluation shows that the proposed method improves accuracy of coronary ostia landmark localization when compared to other known methods.

M. Gajowczyk and P. Rygiel—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al, W.A., Jung, H.Y., Yun, I.D., Jang, Y., Park, H.B., Chang, H.J.: Automatic aortic valve landmark localization in coronary CT angiography using colonial walk. PloS one 13(7), e0200317 (2018)

    Article  Google Scholar 

  2. Consortium, M.: Monai: medical open network for AI (2020). https://doi.org/10.5281/zenodo.6114127, https://doi.org/10.5281/zenodo.6114127, If you use this software, please cite it using these metadata

  3. Dabbah, M.A., et al.: Detection and location of 127 anatomical landmarks in diverse CT datasets. In: Medical Imaging 2014: Image Processing, vol. 9034, p. 903415. International Society for Optics and Photonics (2014)

    Google Scholar 

  4. Donner, R., Menze, B.H., Bischof, H., Langs, G.: Global localization of 3d anatomical structures by pre-filtered hough forests and discrete optimization. Med. Image Anal. 17(8), 1304–1314 (2013)

    Article  Google Scholar 

  5. Elattar, M., et al.: Automatic aortic root landmark detection in CTA images for preprocedural planning of transcatheter aortic valve implantation. Int. J. Cardiovascular Imaging 32(3), 501–511 (2016)

    Google Scholar 

  6. Gao, Y., Shen, D.: Collaborative regression-based anatomical landmark detection. Phys. Med. Biol. 60(24), 9377 (2015)

    Article  Google Scholar 

  7. Han, D., Gao, Y., Wu, G., Yap, P.T., Shen, D.: Robust anatomical landmark detection for mr brain image registration. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 186–193. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_24

  8. Ionasec, R.I., et al.: Dynamic model-driven quantitative and visual evaluation of the aortic valve from 4D CT. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 686–694. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8_82

  9. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. Adv. Neural Inform. Process. Syst. 28, 2017–2025 (2015)

    Google Scholar 

  10. Khanna, A., Londhe, N.D., Gupta, S., Semwal, A.: A deep residual u-net convolutional neural network for automated lung segmentation in computed tomography images. Biocybern. Biomed. Eng. 40(3), 1314–1327 (2020)

    Article  Google Scholar 

  11. Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inform. Theory 37(1), 145–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lu, X., Jolly, M.-P.: Discriminative context modeling using auxiliary markers for lv landmark detection from a single MR image. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 105–114. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36961-2_13

  13. Mahapatra, D.: landmark detection in cardiac MRI using learned local image statistics. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 115–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36961-2_14

  14. Mostafa, A., Ghanem, A.M., El-Shatoury, M., Basha, T.: Improved centerline extraction in fully automated coronary ostium localization and centerline extraction framework using deep learning. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 3846–3849 (2021). https://doi.org/10.1109/EMBC46164.2021.9629655

  15. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

  16. Nibali, A., He, Z., Morgan, S., Prendergast, L.: Numerical coordinate regression with convolutional neural networks. arXiv preprint arXiv:1801.07372 (2018)

  17. Noothout, J.M., et al.: Deep learning-based regression and classification for automatic landmark localization in medical images. IEEE Trans. Med. Imaging 39(12), 4011–4022 (2020)

    Google Scholar 

  18. Noothout, J.M., de Vos, B.D., Wolterink, J.M., Leiner, T., Išgum, I.: CNN-based landmark detection in cardiac CTA scans. arXiv preprint arXiv:1804.04963 (2018)

  19. Oktay, O., et al.: Stratified decision forests for accurate anatomical landmark localization in cardiac images. IEEE Trans. Med. Imaging 36(1), 332–342 (2016)

    Google Scholar 

  20. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNS for landmark localization. Med. Image Anal. 54, 207–219 (2019)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  22. Štern, D., Ebner, T., Urschler, M.: From local to global random regression forests: exploring anatomical landmark localization. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 221–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_26

  23. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. Adv. Neural Inform. Process. Syst. 27, 1799–1807 (2014)

    Google Scholar 

  24. Toshev, A., Szegedy, C.: Deeppose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)

    Google Scholar 

  25. Urschler, M., Ebner, T., Štern, D.: Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization. Med. Image Anal. 43, 23–36 (2018)

    Article  Google Scholar 

  26. Waechter, I., et al.: patient specific models for planning and guidance of minimally invasive aortic valve implantation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 526–533. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_64

  27. Wolterink, J.M., van Hamersvelt, R.W., Viergever, M.A., Leiner, T., Išgum, I.: Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Med. Image Anal. 51, 46–60 (2019)

    Article  Google Scholar 

  28. Yang, W., Li, S., Ouyang, W., Li, H., Wang, X.: Learning feature pyramids for human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1281–1290 (2017)

    Google Scholar 

  29. Yao, Z., et al.: Imagetbad: a 3d computed tomography angiography image dataset for automatic segmentation of type-b aortic dissection. Front. Physiol. 12 (2021)

    Google Scholar 

  30. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Let. 15(5), 749–753 (2018)

    Article  Google Scholar 

  31. Zheng, Y., et al.: Automatic aorta segmentation and valve landmark detection in c-arm CT for transcatheter aortic valve implantation. IEEE Trans. Med. Imaging 31(12), 2307–2321 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Konopczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gajowczyk, M. et al. (2022). Coronary Ostia Localization Using Residual U-Net with Heatmap Matching and 3D DSNT. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds) Machine Learning in Medical Imaging. MLMI 2022. Lecture Notes in Computer Science, vol 13583. Springer, Cham. https://doi.org/10.1007/978-3-031-21014-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21014-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21013-6

  • Online ISBN: 978-3-031-21014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics